Lecture 10, Sep 30, 2021

Coefficient of Restitution

- $e = 1 + \frac{2\Delta E_{int}}{m_1 \Delta v_1 v_{2,1i}}$ (from $K_i = \Delta E_{int} + K_f$)

 $v_{2,1i}$ is always less than zero
 - - * If the two carts are heading towards each other then $v_{2,1i} = v_{1i} v_{2i}$ is positive, but Δv_1 is negative since cart 1 slows down
 - Since the term on the right is always less than zero, any $\Delta E_{int} \neq 0$ will result in a e less than 1
 - $-e \neq 1$ is a result of change in internal energy $\Delta E_{int} \neq 0$
 - When $\Delta E_{int} < 0$, e > 1, and this is an explosive separation (energy is introduced into the system)

Explosive Separations

- Cases where e > 1, kinetic energy is introduced (from the internal energy of the explosive/spring/etc)
 - (c) Velocity-versus-time graph for the motion

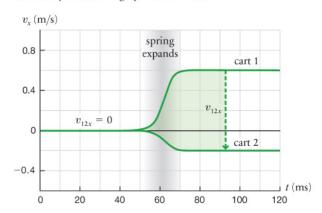


Figure 1: explosive separation

• Solve for v_{1f} and v_{2f} with $v_{1i} = v_{2i} = 0$

$$-E_{spring} = -\Delta E_{int}$$

$$-\Delta K + \Delta E_{int} = 0$$

$$\Rightarrow K_f - K_i + \Delta E_{int} = 0$$

$$\Rightarrow K_f = -\Delta E_{int}$$

$$\Rightarrow K_f = E_{spring}$$

$$\Rightarrow \frac{1}{2}(m_1 v_{1f}^2 + m_2 v_{2f}^2) = E_{spring}$$

$$-m_1 v_{1f} + m_2 v_{2f} = 0$$

$$\Rightarrow v_{2f} = \frac{-m_1}{m_2} v_{1f}$$

$$\Rightarrow \frac{1}{2} \left(m_1 v_{1f}^2 + m_2 \left(\frac{-m_1}{m_2} v_{1f} \right)^2 \right) = E_{spring}$$

$$\Rightarrow v_{1f}^2 = \frac{2E_{spring}}{m_1 + \frac{m_1^2}{m_2}}$$

Reference Frames and Relativity

- Note: The relativity we're talking about assumes $v \ll c$
- How does motion vary from different perspectives? Are energy, momentum, etc conserved?
- Right now limited to observers with constant velocity difference
- $\vec{v}_{A,B}$ is the velocity of A as observed by B
- Define all speeds relative to an observer: $\vec{v}_{o,r} = \frac{\mathrm{d}}{\mathrm{d}t}(\vec{r}_o \vec{r}_r) = \frac{\mathrm{d}}{\mathrm{d}t}\Delta\vec{r}_{r\to o}$ (reference r, object o)
- Physics that work regardless of perspective:
 - Velocity of objects X
 - Momentum of objects **X**(because velocities are different)
 - Total kinetic energy **X**(because velocities are different)
 - Where things happen X
 - When things happen \checkmark (but not in special relativity)
 - Relative velocities ✓
 - Change in momentum ✓
 - Loss of kinetic energy \checkmark (because they agree on Δv)
 - Increase of internal energy ✓
 - Conservation of momentum ✓
 - Conservation of energy ✓
- Change in kinetic energy holds across perspectives $-k_1=\frac{1}{2}m_1v_1^2, k_2=\frac{1}{2}m_2v_2^2$ Observers will agree on Δv_1 and Δv_2

$$-k_1 = \frac{1}{2}m_1v_1^2, k_2 = \frac{1}{2}m_2v_2^2$$

*
$$\Delta K_A = K_{A,f} - K_{A,i} = \frac{1}{2} m_1 (v_{A1f}^2 - v_{A1i}^2)$$