
Lecture 1, Sep 9, 2021
Classical Mechanics: Overview

• The study of objects in motion and the influence of forces on them
• Course involves review using calc and more advanced topics, symmetries of situations

– Learn the difference between hypotheses, assumptions, and derived relations
• Physics is about testing falsifiable hypotheses: learn by disproving hypotheses; uncertainties are very

important

Course Resources
• Quercus homepage (course materials incl. visuals, problem sets, grades)

– Primary source: Link
• Piazza (online discussion forum between peers and TAs)
• Textbook and MyMastering (eText: Principles and Practices of Physics (Mazur))

– Includes problem sets for grades and practice problems not for grades
– Setup: Link

Grade Breakdown
• 10% Problem sets
• 25% Labs
• 30% Term tests (early Oct, mid Nov)
• 35% Final exam

TODO:
⊠ Set up Piazza
⊠ Set up MyMastering
⊠ Read ch 1-3 in textbook (focus on ch 2-3)
⊠ Problem set PS0 (due Sep 16, 11:59pm)

First Deliverables
• PS0 due Sep 16
• PS1 due Sep 24
• First lab writeup due early Oct

Lecture 2, Sep 13, 2021
• Scientific method: Observations induce hypothesis, hypothesis deduce prediction, prediction tests

observations
– Induction makes generalizations, deductions applies the hypothesis to specific cases
– Hypothesis is a combination of a model and assumptions

• Physical laws arise from symmetries:
1. Time invariance: Is physics different “now” compared to “then”?

– Energy conservation ⇐⇒ time invariance
2. Spatial invariance: Is physics different “here” compared to “there”?

– Momentum conservation ⇐⇒ spatial invariance
3. Rotational invariance: Is physics different from “this perspective” compared to a rotated perspec-

tive?
– Angular momentum conservation ⇐⇒ rotational invariance

• Noether’s theorem: Each symmetry corresponds to a conservation law
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• Quantities such as m are typically in italics, and units such as m are typically in roman

Lecture 3, Sep 15, 2021
Motion in 1D
The Calculus of Motion

• The calculus hierarchy: x(t)
d

dt−−−⇀↽−−−�
dt

v(t)
d

dt−−−⇀↽−−−�
dt

a(t)

– Integration only tells you how much the functions changed, not where they started
• Essential calculus: d

dt
tn = ntn−1 =⇒

�
ntn−1 dt = tn + C =⇒

�
tn dt = 1

n + 1 tn+1

• Example: x(t) = 2[m] + 3
[
m/s3] t3 (square brackets denote units)

– v(t) = d
dt

(
2 + 3t3) = 0 + 9t2

• Example: v(t) = 3 [m/s] find x(t) for x(0) = 2 [m]
– x(0) is the constant of integration

• When differentiating by time, a unit of time is introduced in the denominator; e.g. d
dt

[m] = [m/s]

Units of Motion

Quantity Symbol Units
time t T
position x or r⃗ in multiple dimensions L
velocity v or v⃗ in multiple dimensions L/T
acceleration a or a⃗ in multiple dimensions L/T2

speed |v| or ∥v⃗∥ in multiple dimensions L/T

Lecture 4, Sep 16, 2021
One Dimensional Motion, Continued

• a(t) = dv(t)
dt

is only defined for smooth and continuous functions; when collecting real world data
there could be sharp changes in velocity that may not be differentiable (infinite change/discontinuity in
acceleration)

– In reality the actual motion between points is still continuous but the sampling is too rough to tell
– Can’t be described by a simple line

Definite Integrals

•
� b

a

f(t) dt, the definite integral or area under the curve, can be calculated from the indefinite integral�
f(t) dt, from the fundamental theorem of calculus
– Definite integral is a value; indefinite integral is a function

–
� b

a

f(t) dt = F (b) − F (a) where F (t) =
�

f(t) dt

Velocity and Acceleration

• v = dx

dt
and x =

�
v dt
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• a = dv

dt
and v =

�
a dt

• Therefore if we have the velocity and need to know the change in position between two points in time,

use
� t2

t1

v(t) dt = F (t2) − F (t1) = x2 − x1 = ∆x; similarly for velocity/acceleration

Constant Velocity Equations
• v(t) = v0

• ∆x =
� tf

t0

v(t) dt = v0∆t

Constant Acceleration Equations
• a(t) = a0

• ∆v =
� tf

t0

a(t) dt = a0∆t

• v(x) = ∆v + v0 = a0∆t + v0

Lecture 5, Sep 20, 2021
Projectile Motion in 1D

• “Projectile”: any object launched with some initial velocity v0; modelled by xf = xi + vitf + 1
2at2

f

• A projectile launched upwards with vi and a projectile launched downwards with −vi have the same
downward speed when the projectile passes through the starting point

– xf = xi =⇒ vit + 1
2at2 = 0 and v(t) = vi − gt =⇒ t = v(t) − vi

−g
= vi − v

g
=⇒ 0 =

vi

(
vi − v

g

)
− 1

2g

(
vi − v

g

)2
=
(

vi − v

g

)[
vi − 1

2g

(
vi − v

g

)]
=
(

vi − v

g

)[
vi − 1

2 (vi − v)
]
, zero

when v = −vi or v = vi

Inclined Planes and Free Fall
• Galileo observed that the ratio xi

t2
i

was constant; i.e. the position is proportional to time squared, when

the object is rolling down an inclined plane
– This ratio is a function of theta: ax = g sin θ

• When the plane is at 90°, the object is in free fall

Instantaneous Acceleration

• a = dv

dt
= d

dt

(
dx

dt

)
≡ d2x

dt2

• The instantaneous acceleration is the “curvature” of the position function (related? equal to? the actual
curvature κ = 1

R
)

Lecture 6, Sep 22, 2021
Collisions and Inertia

• Consider two identical carts on an airtrack undergoing elastic collision; in an ideal work the two carts
will always exchange speeds, regardless of their initial speeds
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Figure 1: colliding carts

• If one cart is twice as heavy as the other, after the collision the lighter cart will lose twice as much
speed as the heavier cart (possibly reversing)

• From this we can observe that inertia is proportional to the mass of the cart; we can also determine the
inertia of an object by colliding it with a known mass

– The ratio of the velocity changes is the inverse ratio of the masses; e.g. if object 2 had a velocity
change that is twice as much as object 1, then it is half as massive

• If friction is introduced, the straight parts have a downward slope determined by the friction

Figure 2: colliding carts with friction

–
– This might differ depending on the type of friction, e.g. kinetic vs viscous friction

• With this we can define inertia: mu

ms
≡ − ∆vsx

∆vux
=⇒ mu ≡ − ∆vsx

∆vux
ms

– A one kilogram mass is the inertial standard ms

– Mass is a way to measure inertia/mass is inertia

Momentum
• We can rearrange the equations to get mu∆vu + ms∆vs = 0, leading us to define momentum as

px ≡ mvx

• Since mu∆vu+ms∆vs = 0 =⇒ mu(vuf −vui)+ms(vsf −vsi) = 0 =⇒ muvui+msvsi = muvuf +msvsf ,
momentum is conserved; change in momentum of s is balanced by change in momentum of u

– ∆pu + ∆ps = 0 ⇐⇒ pui + psi = puf + psf
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• We can use this formula and go back to the carts before (s is the standard cart, d is the double cart):
∆ps + ∆pd = 0 =⇒ ms∆vs + md∆vd =⇒ ∆vd = −ms

md
∆vs = −2∆vs

Lecture 7, Sep 23, 2021
Momentum Continued

• Momentum is a vector: p⃗ = mv⃗ with units of kg · m/s
• The momentum of a system is the sum of all the momentum of its pieces, and this quantity is conserved
• Momentum is only conserved inside an isolated system, i.e. all the pieces in the interaction are included

– e.g. momentum is conserved in a collision if both carts are in the system, but it is not if only one
cart is in the system, since the other cart would be an external

• The change in momentum is impulse: ∆p⃗ = J⃗ (this quantity is only nonzero when external forces act
on the system)

• This even works when the speed of particles is near c, such as in Compton scattering
• To choose the right system, identify the interactions, then eliminate objects if interactions cause no

acceleration
– e.g. for two carts sliding without friction, the surface is eliminated, since the interaction with the

surface does not create a force/acceleration
• When the two objects stick together, the momentum is still conserved
• If the two carts stick together, they will both move together at the same slower velocity
• ∆p1 + ∆p2 = 0 =⇒ m1∆v1 + m2∆v2 = 0 =⇒ ∆v2

∆v1
= −m1

m2
=⇒ ∆v2 = −m1∆v1

m2

Lecture 8, Sep 27, 2021
Energy

• Energy comes in many forms: electromagnetic waves, rotational/translational kinetic, thermal, bio-
chemical, etc

• We will study mechanical energy: translational and rotational kinetic energy

Classifying Collisions
• Elastic collisions: ∆v12 initial = ∆v12 final ≡ |v2 − v1|

– The difference in velocity remains the same before and after the collision, even if the two masses
are different

• Totally inelastic collisions: ∆v12 final = 0, i.e. the two objects stick together

Kinetic Energy

• K = 1
2mv2 and does not depend on the direction of motion

• Kinetic energy is conserved in elastic collisions but not in inelastic collisions, whereas momentum is
conserved in both

• Inelastic collisions usually result in some sort of irreversible change, e.g. irreversible deformations
– The energy lost goes into the internal energy Eint: E = K + Eint

• A closed system has its energy conserved, an open system does not
– Closed/open for energy, isolated/not isolated for momentum
– Remember momentum is a vector, so even if the speed does not change, if the direction of motion

changes, momentum changes; therefore orbiting planets are not isolated (they change direction
and thus momentum)
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Lecture 9, Sep 29, 2021
Identifying and Choosing Closed Systems

• A closed system is any system that does not transfer energy in/out of it
• Identify all objects that change state or state of motion, and group them together to make a closed

system

Elastic Collisions in Isolated and Closed Systems
• The difference in speed remains the same after an elastic collision

• Relative speed remains the same but relative velocity is negated

Figure 3: relative speed

•

• Conservation of momentum, conservation of energy and elastic collisions can be derived from each other

– ki = kf

=⇒ 1
2m1v2

1i + 1
2m2v2

2i = 1
2m1v2

1f + 1
2m2v2

2f

=⇒ m1(v2
1f − v2

1i) = m2(v2
2f − v2

2i)
=⇒ m1(v1f + v1i)(v1f − v1i) = m2(v2f + v2i)(v2f − v2f )
=⇒ ∆p1(v1f + v1i) = ∆p2(v2f + v2i)

• In an elastic collision ki = kf

• Energy is measured in Joules: 1J = 1kg · m2/s2 = 1m · kg · m/s2 = 1N · m

Quantifying (In)Elastic Collisions

• We can quantify how elastic a collision is with the coefficient of restitution: e ≡ v12f

v12i
• The coefficient of restitution is the ratio between the final difference in speed and initial difference in

speed
• The coefficient of restitution is positive, even though the direction of velocity reverses in an elastic

collision
• Elastic collisions have e = 1, while totally inelastic collisions have e = 0

Lecture 10, Sep 30, 2021
Coefficient of Restitution

• e = 1 + 2∆Eint

m1∆v1v2,1i
(from Ki = ∆Eint + Kf )

– v2,1i is always less than zero
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* If the two carts are heading towards each other then v2,1i = v1i − v2i is positive, but ∆v1 is
negative since cart 1 slows down

– Since the term on the right is always less than zero, any ∆Eint ̸= 0 will result in a e less than 1
– e ̸= 1 is a result of change in internal energy ∆Eint ̸= 0
– When ∆Eint < 0, e > 1, and this is an explosive separation (energy is introduced into the system)

Explosive Separations
• Cases where e > 1, kinetic energy is introduced (from the internal energy of the explosive/spring/etc)

Figure 4: explosive separation

•

• Solve for v1f and v2f with v1i = v2i = 0

– Espring = −∆Eint

– ∆K + ∆Eint = 0
=⇒ Kf − Ki + ∆Eint = 0
=⇒ Kf = −∆Eint

=⇒ Kf = Espring

=⇒ 1
2(m1v2

1f + m2v2
2f ) = Espring

– m1v1f + m2v2f = 0

=⇒ v2f = −m1

m2
v1f

=⇒ 1
2

(
m1v2

1f + m2

(
−m1

m2
v1f

)2
)

= Espring

=⇒ v2
1f = 2Espring

m1 + m2
1

m2

Reference Frames and Relativity
• Note: The relativity we’re talking about assumes v ≪ c
• How does motion vary from different perspectives? Are energy, momentum, etc conserved?
• Right now limited to observers with constant velocity difference
• v⃗A,B is the velocity of A as observed by B
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• Define all speeds relative to an observer: v⃗o,r = d
dt

(r⃗o − r⃗r) = d
dt

∆r⃗r→o (reference r, object o)
• Physics that work regardless of perspective:

– Velocity of objects ✗
– Momentum of objects ✗(because velocities are different)
– Total kinetic energy ✗(because velocities are different)
– Where things happen ✗
– When things happen ✓(but not in special relativity)
– Relative velocities ✓
– Change in momentum ✓
– Loss of kinetic energy ✓(because they agree on ∆v)
– Increase of internal energy ✓
– Conservation of momentum ✓
– Conservation of energy ✓

• Change in kinetic energy holds across perspectives
– k1 = 1

2m1v2
1 , k2 = 1

2m2v2
2

– Observers will agree on ∆v1 and ∆v2
– Frame A:

* ∆KA = KA,f − KA,i = 1
2m1(v2

A1f − v2
A1i)

Lecture 11, Oct 4, 2021
Inertial Reference Frames

• An inertial reference frame is a reference frame moving at a constant speed; two observers moving
relative to one another at a constant speed are both in inertial reference frames

– However, both observers could be accelerating relative to some third frame (e.g. the Earth); as
long as they’re accelerating the same amount and so have a constant relative speed

* e.g. two astronauts orbiting the earth
• Example of noninertial reference frame: accelerating car

– Noninertial reference frames lead to fictitious forces from the perspective of the observer in the
reference frame, e.g. centrifugal force

Galilean Coordinate Transformations
• The core of Galilean relativity is that all observers agree on the time of events: tBe = tAe = te

• The position of events are different: r⃗Be = r⃗Ae − v⃗ABte

• Note: First letter is observer, e.g. r⃗AB is the position of B relative to A
• Suppose A and B are in inertial reference frames and c is an accelerating object

– ∆r⃗Ac = ∆r⃗AB + ∆r⃗Bc

– ∆r⃗Ac = ∆r⃗AB + ∆r⃗Bc =⇒ v⃗Ac = v⃗AB + v⃗Bc =⇒ ∆v⃗Ac = ∆v⃗Bc assuming v⃗AB is constant
– Therefore a⃗Ac = a⃗Bc, assuming v⃗AB is constant

• If we’re careful about the subscripts then we can use “cancellation”: r⃗Ae = r⃗A�B + r⃗�Be

• Position vectors are each other’s opposites: r⃗AB = −r⃗BA, which also applies to velocities, accelerations,
etc

Principles of Relativity
• Since changes in velocity are the same regardless of inertial reference frame, momentum and kinetic

energy are conserved
– Note only changes in kinetic energy are the same, but the entire kinetic energy may be different
– Differences in kinetic energy are the same even for inelastic collisions

• In general, all laws of physics are frame independent
• As a direct result, physics measurements cannot distinguish one inertial reference frame from another
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Lecture 12, Oct 6, 2021
Preferred Reference Frames (Centre of Momentum)

• Recall that from the previous lecture that for two observers in inertial reference frames, all physics
remains the same

• Try to find an inertial reference frame where total momentum is 0
• Consider 3 objects of mass 1, 2, 3kg moving at 1, 2, 3m/s from frame A

– pA = m1v1 + m2v2 + m3v3
– pF = m1(v1 − vAF ) + m2(v2 − vAF ) + m3(v3 − vAF ) which is a linear function of vAF

* At some value of vAF = vAZ , pF = 0; how do we calculate this value?
– pA =

∑
mivi → pZ =

∑
mi(vi − vz) =

∑
mivi −

∑
mivz =

∑
mivi − vzMtot

– ptot = 0 =⇒ vz =
∑

mivi

Mtot
= pA

Mtot
– Note here vz is relative to A
– Akin to a weighted average for centre of gravity

Centre of Mass
• If we integrate our expression for vz, we get the mass-weighted average position, i.e. the center of mass
• The centre-of-mass velocity v⃗cm is exactly the velocity of the zero-momentum reference frame
• When measured from a reference frame moving the same velocity as the centre of mass of the system,

the system’s total momentum is 0
• During a collision, the momentum of the system and thus the zero-momentum reference frame velocity

does not change, and so the velocity of the centre of mass of the system does not change

Kinetic Energy in Different Inertial Frames

• KA =
∑ 1

2miv
2
i

• KF =
∑ 1

2mi(vi − vF )2 = 1
2
∑

miv
2
i −

∑
mivivF + 1

2miv
2
F = KA − MtotvzvF + 1

2Mtotv
2
F

• M

2 (vF − vz)2 = M

2 v2
F − MvF vz + M

2 Mv2
F

• Kmin is the kinetic energy as observed at vz, the centre of momentum frame; all other observers see
more kinetic energy

• In summary, in the frame moving at vAF = vcm, the centre of mass is stationary, the total momentum
remains zero, and the kinetic energy is minimized

• What is the physical significance of Kcm?
– All kinetic energy from Ki is converted to some ∆Eint

– ∆Eint = Ki for e = 0 in the z-frame
– In a totally inelastic collision the two objects stick together, and if observed at the center of

momentum this means they both stop
– In the center of momentum frame Kmin goes all the way to zero, but in all other frames there is

some kinetic energy left over

Convertible Kinetic Energy (Textbook)
• For a system of objects, the kinetic energy as measured in the Earth reference frame is KE

• KE = 1
2
∑

miv
2
i = 1

2
∑

mi(vcm + vZi) = 1
2v2

cm

∑
mi + vcm

∑
mivZi + 1

2
∑

miv
2
Zi

– From the definition of the zero-momentum reference frame we know that
∑

mivZi =
∑

pZi = 0
so the middle term disappears

– 1
2
∑

miv
2
Zi is just the sum of all kinetic energies as observed in the zero-momentum reference

frame KZ
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– If we substitute m =
∑

mi we get KE = 1
2mv2

cm + KZ

– The 1
2mv2

cm term is the kinetic energy associated with the motion of the center of mass of the
system Kcm

* For an isolated system, Kcm is nonconvertible, i.e. cannot be converted into internal energy,
because it is needed to preserve conservation of momentum; recall how the velocity of the
centre of mass of a system does not change after a collision

– The KZ term is the system’s convertible kinetic energy Kconv, which can be converted into internal
energy while conserving the momentum of the system

• Therefore we have K = Kconv + Kcm, where Kconv = 1
2
∑

mivi − 1
2mv2

cm and this holds in any inertial
reference frame; i.e. the kinetic energy of any system can be split into a convertible and a nonconvertible
part

• We can also express Kconv = 1
2µv2

12, where µ is the reduced inertia/mass
• In a totally inelastic collision, all the convertible kinetic energy is converted into internal energy, but

the system has to retain its nonconvertible kinetic energy Kcm to maintain momentum conservation

Lecture 13, Oct 13, 2021
Inelastic Collision From Other Frames

• Kinetic energy of f as observed by A is Kf = Kcm = 1
2m(vAf − vAZ)2; true for both initial and final

states in a collision
• kfi

= Kcm,i + 1
2m(vAf − vcm)2

• kff
= Kcm,f + 1

2m(vAf − vcm)2

• The same amount of kinetic energy can be converted into internal energy in all frames
• The additional kinetic energy as observed from other frames cannot be converted to internal energy

even in totally inelastic collisions
– This is the unavailable/unconvertible kinetic energy, and is required for momentum conservation

Convertible Kinetic Energy
• |∆k| = ∆Eint since in the center of momentum frame (Z) we can convert all the kinetic energy as there

is no momentum
• We can convert this to other frames by adding an additional term for KF,tot = KZ,tot + 1

2mtot(vcm,f )2

– The KZ,tot is the convertible part and 1
2mtot(vcm,f )2 is not convertible

• Kconv = Kf,tot − 1
2mtotv

2
cm,f so we can apply a correction to see how much energy is convertible by

subtracting off the kinetic energy of the center of momentum frame
• Application: Particle colliders

– If you collide particles against a fixed target, a large part of the kinetic energy is unconvertible
since the momentum needs to be maintained

– However, if you collide particles against a moving particle such that the collision is in the centre of
momentum frame, all the kinetic energy is now convertible

Reduced/Effective Mass
• Kconv is a frame independent quantity; how is this related to v12, the relative velocity of the two

participants in the collision, which is also frame independent?
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• Kconv = Ktot − 1
2mtotv

2
cm

= 1
2m1v2

1 + 1
2m2v2

2 − 1
2mtot

(
m1v1 + m2v2

mtot

)2

• 2mtotKconv = (m1 + m2)(m1v2
1 + m2v2

2) − (m1v2
1 + m2v2

2 + 2m1m2v1v2) = m1m2(v2 − v1)2

• Kconv = 1
2

m1m2

m1 + m2
(v2 − v1)2 = 1

2µv2
12 where µ is m1m2

m1 + m2
which is the reduced/effective mass

Interactions
• In an isolated system, the total momentum before, after, and during a collision stays the same, but the

kinetic energy does not
• Since objects don’t maintain constant relative speed during the entire collision, the total kinetic energy

changes, even for elastic collisions
• If the collision is elastic, the kinetic energy is the same before and after a collision, but it is still

decreased during a collision
• At some point during the collision ∆v = 0; there is no way to tell whether the collision is elastic or

inelastic by only looking at what happens before this point
• The kinetic energy lost during the collision is converted into internal energy; for elastic collisions some

of this energy comes back
• If we’re looking at it from the centre of momentum frame, in the middle of the collision all the kinetic

energy is converted into internal energy

Lecture 14, Oct 14, 2021
Potential Energy

• During a collision of a cart with a spring, the kinetic energy is converted into potential energy in the
spring

• Potential energy is a form of energy that can be converted back into kinetic energy and is associated
with reversible changes (e.g. compressing a spring)

Energy Dissipation
• Energy dissipation is the loss of kinetic energy that cannot be reversed
• This usually happens on an atomic scale; the kinetic energy is converted into motion on an atomic scale,

and the chaotic and incoherent behaviour of the particles means the energy cannot be converted back
into kinetic energy of the cart

• Textbook uses bending vs crumpling a piece of paper

Energy Classification
• The textbook classifies energy into 4 categories:

1. Kinetic energy: coherent energy associated with motion of objects (easily calculable)
2. Potential energy: coherent energy associated with configuration of interacting objects (e.g. gravita-

tional, elastic) (easily calculable)
3. Source energy: incoherent energy used to produce other forms of energy (e.g. chemical, nuclear,

solar) (very hard to calculate)
4. Thermal energy: incoherent energy associated with the chaotic motion of atoms

• Example of the types of energy:
– Kinetic energy: a litre of gas moving in a car
– Thermal energy: heating up a litre of gas by 1 degree (usually cannot be converted into kinetic

energy)
– Potential energy: a litre of gas sitting 1m above the floor (can be converted into kinetic energy)

11



– Source energy (chemical): Burning a litre of gas (cannot be directly converted into kinetic energy)
• Coherent forms of energy (kinetic, potential) are usually much smaller than the incoherent forms of

energy (source, thermal)
• Coherent energy (mechanical energy) consists of kinetic and potential energy; all the atoms are moving

in some coherent direction and this can be converted, reversibly, to and from kinetic energy easily
• Incoherent energy consists of thermal and source (e.g. chemical) energy; all the atoms are moving in

random directions so this cannot be converted into kinetic energy reversibly and efficiently
• All energy that is not kinetic energy (potential energy, thermal energy, source energy) are all considered

internal energy
• Macroscopic objects eventually lose their kinetic energy (e.g. balls bouncing in a box), but on a

microscopic level atomic movements do not stop (the subatomic particles are too small to store the
kinetic energy in the particles due to the quantum nature of energy)

Interactions and Acceleration
• Momentum conservation requires ∆ ⃗ptot = 0 =⇒ ∆p⃗1 = −∆p⃗2

• Therefore ∆p⃗1

∆t
= −∆p⃗2

∆t
=⇒ m1∆v⃗1

∆t
= −m2∆v⃗2

∆t
=⇒ m1a⃗1 = m2a⃗2

• Therefore the ratio of accelerations is proportional to the negative inverse of the ratio of masses
∥a⃗1∥
∥a⃗2∥

= −m2

m1
• Example: 1000kg car and 2000kg truck both moving at 25m/s towards each other collides in 0.2s

– pi = 1000kg · 25m/s − 2000kg · 25m/s = −25000kg m/s

– vf = pf

mtot
= pi

mtot
= −25000kg m/s

3000kg = 8.3m/s

– a1 = −8.3m/s − 25m/s
0.2s = −166m/s2 (the car reversed direction so it has a larger acceleration)

– a2 = −8.3m/s − (−25m/s)
0.2s = +83m/s2 (the truck continues to move in the same direction so it

has a smaller acceleration)
– The ratio of accelerations a1

a2
= −2 = −2000kg

1000kg = −m2

m1

Energy Conversion
• A nondissipative (reversible) interaction converts between kinetic and potential energy; all energy is

coherent, no energy is dissipated (e.g. zero friction cart hits spring, which does not heat up)
• A dissipative (nonreversible) interaction could convert between kinetic and potential energy and have

some energy lost as thermal energy (e.g. car rolling up a hill)
• Another dissipative interaction could convert source energy to all other forms of energy (e.g. burning

gas in a car)
• Another dissipative interaction could convert source energy entirely to thermal energy (e.g. burning gas,

a rock sitting outside in a sunny day)

Lecture 15, Oct 18, 2021
Interaction Ranges

• All interactions (e.g. magnetic, collisions) have different ranges
• Some interactions are long-range (e.g. magnetic, gravitational) and work without requiring “contact”
• Other interactions are short-range and only work when objects are “contacting” (e.g. collisions)

Fundamental Interactions
• Electromagnetism and gravity can be characterize by fields
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• Moving the charges generates waves in the field
• Strong and weak interactions are caused by fundamental particles such as pions
• Out of the 4 fundamental interactions, gravity is the weakest by many orders of magnitude
• Weak interactions cause the spontaneous decay of nuclei

Nondissipative Interactions
• In any closed system ∆E = ∆K + ∆U + ∆Es + ∆Eth = 0
• For a non-dissipative system ∆Es = ∆Eth = 0, i.e. energy is only converted between kinetic and

potential forms
• The mechanical energy of a system Emech = K + U is the sum of the kinetic and potential energy; for a

closed, nondissipative system then ∆Emech = 0
• Example: a cart-spring collision is nondissipative; ∆Kcart = −∆Uspring as the cart slows down and

energy is stored in the spring
• Potential energy is only a function of position U(x) and as a result not depend on the path taken

(conservative force); we can calculate this function
• Principle of Potential Energy: The parts of any closed system always tend to accelerate in the

direction that lowers the system’s potential energy.

Local Gravitational Potential Energy
• Suppose a ball falls from xi to xf

• ∆UG = −∆Kball and ax = −g

• ∆t = −∆vx

g

• ∆x = vi∆t − 1
2g∆t2, substitute ∆t

• ∆x = vi
−∆vx

g
− 1

2g

(
∆vx

g

)2

= −∆vx

2g
[2vxi + (vxf − vxi)]

= −∆vx

2g
(vxi + vxf )

= −(vxf − vxi)
2g

(vxi + vxf )

= − 1
2g

(v2
xf − v2

xi)

• mg∆x = −1
2m(v2

xf − v2
xi) =⇒ mg∆x + ∆Kball = 0 and since ∆UG + ∆Kball = 0, ∆UG = mg∆x

Dissipative Interactions
• With dissipative interactions, the energy is not a function of position (e.g. friction); reactions are

nonreversible
• ∆E = ∆K + ∆U + ∆Eth, if no reversible potential energy, then ∆E = ∆Eth + ∆K = 0 =⇒ ∆K =

−∆Eth, and Eth is not a function of position
• Example: Totally elastic collision where ∆K = 0 has ∆Eth = 0; for totally collisions, ∆K =

1
2µv21,i(e2 − 1),so ∆Eth = 1

2µv21,i(1 − e2)

13



Lecture 16, Oct 20, 2021
Momentum and Force

• Force is the rate of change of momentum: F⃗ = dd

dt
mv⃗

• For constant masses this is equal to F⃗ = ma⃗
• The acceleration of an object is caused by the net force, i.e. vector sum of all forces on that object
• Since momentum is conserved, ∆p1 = −∆p2 =⇒ ∆p1

∆t
= ∆p2

∆t
=⇒ F1 = −F2

• Because of this, forces always come in pairs that are opposite in direction but equal in magnitude

Translational Equilibrium
• An object is in equilibrium if it is not accelerating (this is true for all inertial reference frames since

acceleration is the same regardless of reference frame)
• Therefore the object is not subject to any net force
• The object will remain at rest of move at constant velocity

Lecture 17, Oct 21, 2021
Newtons Laws From Momentum Conservation

• Newton’s first law (isolated objects stay at rest/in motion) is a result of momentum being conserved in
an isolated system

• Newton’s second law (F = ma, definition of force) is a result of differentiating momentum dp

dt
• Newton’s third law (every force has an equal and opposite reaction) is a result of differentiating

∆p1 = −∆p2

Superposition of Forces
• Forces can be superimposed; the result of several forces on an object is an acceleration equal to the

sum of the accelerations caused by the individual accelerations

Springs and Tension
• Springs extend to generate forces and pull loads into equilibrium
• The force generated by a spring as the result of a displacement is proportional to the magnitude of

displacement (Hooke’s law)
• This is only valid for a limited range of extensions and contractions

Impulse

• a⃗ = ∆v⃗

∆t
=⇒ ma⃗ = m

∆v⃗

∆t
= ∆p⃗

∆t
• We define ∆p⃗ = J⃗ , the impulse (change in momentum)
• Since

∑
F⃗ = ma⃗, so J⃗ = ∆t

∑
F⃗

• If force varies over time then J⃗ =
� tf

ti

∑
F⃗ (t) dt

• As area under the acceleration curve is change in velocity, area under the force curve is impulse

Example: Tennis Racket Launching Ball
• Suppose a tennis racket hits a ball (0.20kg) and immediately after the collision the ball has an acceleration

of 9g upwards, how much force needs to be applied by the racket?

14



–
∑

F = F G
Eb + F C

rb = mba =⇒ F C
rb − mbg = 9mbg =⇒ F C

rb = 10mbg

* Note superscripts are used to indicate type of force (Gravity, Contact), and subscripts are
used to denote the objects (Environment on ball, racket on ball)

– Substitute mb = 0.20kg =⇒ F C
rb = 20N

Lecture 18, Oct 25, 2021
Systems of Interacting Objects

• If two masses are connected by a spring and you push on one of them, what happens to the system?
• What happens to the individual blocks is hard to determine, but the acceleration of the centre of mass

is equal to the force over the total mass, because all internal forces cancel out
• The centre of mass of a system behaves like a rigid body so it can be used as a simplification
• The impulse is then equal to J⃗ = mtot∆v⃗cm

Terminal Velocity/Free Fall
• Objects in free fall are slowed by air resistance; at low speeds this drag force is proportional to speed,

and at higher velocities the airflow becomes turbulent and the drag force becomes quadratic
• Since drag force increases as velocity increases, at some point the force of gravity balances with the

drag force and the object stops accelerating

• vT = mg

b
for laminar flow or vT =

√
mg

c
for turbulent flow

• In the case of laminar flow, when approaching terminal velocity, F = m
dv

dt
= mg − bv = vT b − bv =⇒

dv

dt
= − b

m
(v − vT ) since vT = mg

b
; b

m
is a property of the falling object, so define τ = m

b
=⇒ dv

dt
=

− 1
τ

(v − vT )
– τ is a time constant characteristic of how fast the object approaches vT

• This is a differential equation and ends up being a decaying exponential

Lecture 19, Oct 27, 2021
Work

• Definition: Work is change of the energy of a system ∆E as a result of external forces
• Forces can only do work if their point of application is displaced, e.g. pushing on a wall does no work
• Work can result in changes in all forms of energy
• Since energy in a closed system is conserved, work only applies when energy enters or leaves a closed

system: Ef = Ei + W
• Work is positive if the point of application moves in the same direction as the applied force and negative

if it moves in the opposite direction
• Consider two blocks with a spring between them; if the system is considered to be the spring and the

blocks, then the system is closed and there is no work since no change in energy happens; if the system
is considered to be just the spring, the blocks would do positive work on it

• When picking the system, avoid picking a system that would have friction acting on the boundary;
since friction creates thermal energy, which goes into both the system and what’s outside the system,
it’s difficult to tell how much energy is going into the system; furthermore friction is not acting on a
single point, so ∆xf cannot be determined
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Lecture 20, Oct 28, 2021
Calculating Work

• For a single particle not subject to potential energy change, ∆E = W and ∆E = ∆K =⇒ W = ∆E

• vf = vi + a∆t and ∆x = vi∆t + 1
2a∆t2, so W = ∆K

= Kf − Ki

= 1
2m(v2

f − v2
i )

= 1
2m((vi + a∆t)2 − v2

i )

= 1
2m(2via∆t + a2∆t2)

= ma(vi∆t + 1
2a∆t2)

= ma∆x

= F∆x
• So work is equal to the product of the force and the displacement of the point the force acts on
• For more than one force W = ∆x

∑
Fx

• A closed system has W = 0
• There is a parallel between work and impulse; work is to energy as impulse is to momentum
• Problems can be solved in two ways: by considering everything in the system and making it a closed

system (chapter 5, energy conservation based approach), or only include some parts and make some
forces external (work based approach)

Multiparticle Systems
• For a multiparticle system some work goes into internal energy, so while ∆K is the applied force times

to the displacement of the centre of mass, this is not quite W
• However, all work ends up somewhere, so Wenv = −Wsys and we can use the work done by the

environment to find the work done on the system
• If there are multiple forces, the force displacement of each point might not all be equal, so W =

∑
Fi∆xi

Changing Forces
• If the force is varying then an integral can be used

Lecture 21, Nov 1, 2021
Work Done on Springs

• The reaction force of a spring is k(x − x0) by Hooke’s law and if we set the relaxed length to 0, we get
F = −kx; since this force is equal and opposite to the applied force, the applied force is kx

• The work done by the hand compressing the spring is
� xb

0
kx dx = 1

2kx2
b

• The potential energy of the spring is a quadratic function
• Springs are an example of stable equilibrium; at x = x0, the spring will actively resist any force that

pushes it away from equilibrium
– Unstable equilibrium is like a ball on a hill; if it is pushed even slightly, it will tend towards some

other state instead of returning to the same state
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Power

• Power is the rate at which energy changes, dE

dt
or ∆E

∆t
if the rate is constant; alternatively P = Fv

• Power is measured in J/s = W

Two-Dimensional Motion

• In two dimensions quantities are represented as two-dimensional vectors
[
x
y

]
• The vectors can be in any coordinate system, e.g. the axes can be rotated or stretched

Lecture 22, Nov 3, 2021
Two Dimensional Kinematics

• Velocity and acceleration in 2 dimensions can be decomposed into components
• The velocity v⃗ is always tangent to the trajectory
• Acceleration a⃗ can be decomposed into two components, one tangent to the trajectory (same direction

as v⃗) which only accelerates the object, and one perpendicular to the trajectory (orthogonal to v⃗) which
only changes the object’s direction

– This is true instantaneously; over a time interval, as the perpendicular component of acceleration
changes the direction of velocity, more and more of the acceleration will go to increasing the
velocity rather than changing its direction

• In multiple dimensions position r⃗(t) =

x(t)
y(t)
z(t)

, v⃗(t) = d
dt

r⃗(t) =


dx

dtdy

dtdz

dt

 and so on for acceleration

– The speed is the magnitude of v⃗
• When we differentiate/integrate to get from one to the other, we can do so for each component separately
• We typically want to find the simplest coordinate system, usually one that has no motion in one or

more dimensions, in orders simplify the problem

Projectile Motion
• The special case of constant acceleration where a⃗ = −gĵ
• Horizontal component of velocity is constant (ignoring air friction)
• Since the slope of the curve is dy

dx
= vy

vx

• r⃗ = 1
2 a⃗t2 + v⃗t =⇒

x = vxt = v0 cos θt

y = −1
2at2 + vyt = −1

2gt2 + v0 sin θt
; eliminate t by substituting t = x

v0 cos θ

to get y = x tan θ − gx2

2v2
0 cos2 θ

• To find the range, we solve for when y = 0 =⇒ gx2

2v2
0 cos2 θ

= x tan θ =⇒ x = v2
0
g

sin(2θ) (use double

angle identity 2 sin θ cos θ = sin(2θ))
– In order to maximize range sin(2θ) = 1 =⇒ 2θ = π

2 =⇒ θ = π

4 = 45°

• The max flight time only depends on vy, and occurs when y = 0 =⇒ v0 sin θt = 1
2gt2 =⇒ t = 2v0 sin θ

g
,

so the object should be thrown straight up
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Decomposing Forces
• Example: Pulling someone on a swing; the force needed grows larger as the angle of the swing increases
• We can decompose the force being applied by the swing pivot into two components, one perpendicular

the ground and one parallel to the ground
• As you pull the person back, the angle increases and the lateral component of the swing pivot force

grows, which needs to be balanced out by the applied force
– The vertical component of the swing pivot force is balanced by gravity; the diagonal force of the

pivot has a vertical component to counteract gravity, and as a side effect this produces a horizontal
component that must be balanced out by the applied force

Lecture 23, Nov 4, 2021
Static Friction

• Friction of all kinds always opposes relative motion between two surfaces
• Static friction is a non-dissipative force; since the object does not move, no thermal energy is produced
• Static friction is always less than the net applied force
• Max static friction is proportional to the normal force by a friction coefficient Fs = µsFn; once this

amount is exceeded the object will start moving and kinetic friction comes into effect
• Independent of contact area and velocity

Kinetic Friction
• (Kinetic) friction in general is a dissipative force that takes kinetic and/or potential energy to thermal

energy; therefore it is irreversible
• Once the object starts sliding, static friction turns into kinetic friction
• Also proportional to the normal force by another coefficient µk, which is always less than µs

– If the kinetic friction coefficient is greater than or equal to the static friction coefficient, then the
object would stop sliding as soon as it starts sliding

• Once the object starts moving the force required it to keep moving decreases as the type of friction
switches from static to kinetic

Decomposition of Friction
• Consider a block resting on a surface; the force of friction acts parallel to the surface and holds the

block in place, and opposes the component of gravity that parallel and down the surface
• With these inclined plane problems, forces such as gravity should be broken down into a component

parallel to the plane and another one normal to the plane; the normal forces are always in balanced,
and the parallel forces are opposed by friction

– The component of gravity down the plane is sin θ and the component normal to the plane is cos θ;
thus at θ = 0 we have a flat plane, and all the force is normal to the plane, and as θ increases, the
component of gravity down the ramp increases as sin θ increases

Friction Example
• Example: Person jumping onto a slider with mp = ms, and friction between the person and the block

but not between the block and the floor
– To find the final velocity of the person-block system after the person stops sliding on the block, we

can use conservation of momentum mpvpi = (mp + mb)vf =⇒ vf = vpi

2
– Kinetic energy follows now that we have the final velocity, so now we can find the change in kinetic

energy
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– To find the distance that the person slides on the block, we can use ∆Eth = −∆K and Fk = µkmpg

so d = ∆Eth

µkmpg

Lecture 24, Nov 15, 2021
Work in Multiple Dimensions

• In multiple dimensions power is generalized from P = Fv to P = F⃗ · v⃗
• Power is the rate of change of mechanical energy
• In one dimension K = 1

2mv2 =⇒ dK

dt
= 1

2m
d
dt

v2 = mv
dv

dt
= mva = Fv

• In multiple dimensions K = 1
2m∥v⃗∥2 where ∥v⃗∥2 = v2

x + v2
y + v2

z , so dK

dt
= 1

2m
d
dt

∥v⃗∥2 = 1
2m(2vxax +

2vyay + 2vzaz) = Fxvx + Fyvy + Fzvz = F⃗ · v⃗

• Using the dot product F⃗ · v⃗ = Fxvx + Fyvy + Fzvz =
∥∥∥F⃗
∥∥∥∥v⃗∥ cos θ, which computes the velocity of the

point of application in the direction of the applied force
– Example: The earth orbiting around the sun does no work, because the gravitational force pulling

it inwards is perpendicular to the displacement of the Earth
• Generalizing this to work, dW = P dt = F⃗ · ∆dr⃗ and taking the integral we obtain work as a line

integral: W =
�

F⃗ · dr⃗

– To actually compute this integral we need to parameterize r⃗(t), and turn dr⃗ into

dx
dy
dz

, each of

which expressed in terms of dt, so the integral can now be computed
–
�

F⃗ · dr⃗ =
�

F⃗ · dr⃗

dt
dt and dr⃗

dt
is just the velocity

Force Created by Potential Energy
• Recall that systems always accelerate towards lower potential every
• Since dK = W dt = F dx, thus dU = −F dx and F = −dU

dx
• So if we know the change in potential energy then we know the force
• In multiple dimensions Fx = −∂U

∂x
, Fy = −∂U

∂y
, etc

• If we write force as a vector then F⃗ = −∂U

∂x
î + −∂U

∂y
ĵ, which is the gradient of U , F⃗ = −∇⃗U , thus

force is the gradient of potential

– e.g. gravitational potential U(x, y) = mgy =⇒ F⃗ =
[

0
−mg

]
, or a spring U(x, y) = 1

2kx2 =⇒

F⃗ =
[
−kx

0

]
• Forces derived from the gradient of a potential are conservative; U + K is always conserved
• With a conservative force the work done is independent of the path taken, by the fundamental theorem

of calculus for line integrals

Lecture 25, Nov 17, 2021
Circular Motion

• There are two kind of circular motion: rotations, where the axis is within the object, and revolutions,
where the axis is external and out side the object

• With circular motion we can change our coordinate system to use directions that are more convenient
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– Use polar coordinates (r, θ) to describe coordinates instead of Cartesian coordinates allows us to
only consider θ if the radius remains constant

– x = r cos θ and y = r sin θ
• Objects in circular motion experience acceleration even when the rate of rotation and radius are constant;

we have to fall back to v⃗(t) = dr⃗

dt
and a⃗(t) = dv⃗

dt
= d2r⃗

dt2
• T is the period (time for one revolution), ω is the angular frequency in radians per second (not

revolutions per second), ω = 2π

T

• Define dθ

dt
= ω(t) – θ is the rotational analogue of position and ω is the rotational analogue of velocity

• Define dω

dt
= α(t), the rotational analogue of acceleration

Uniform Circular Motion
• Motion around a circle with constant radius at a constant speed
• Speed is circumference over time, so ∥v⃗∥ = 2πr

T
= 2πr

2π
ω

= ωr, i.e. speed is angular speed times radius

• The x and y positions over time follow a cosine and sine curve respectively since r⃗ = r

[
cos(ωt)
sin(ωt)

]
– Note angle θ = ωt since constant angular velocity

• v⃗(t) = dr⃗

dt
= d

dt

[
r cos θ
r sin θ

]
= r

dθ

dt

[
− sin θ
cos θ

]
• a⃗(t) = dv⃗

dt

= r
d2θ

dt2

[
− sin θ
cos θ

]
+ r

dθ

dt

dθ

dt
− cos θ

dθ

dt
− sin θ


= r

d2θ

dt2

[
− sin θ
cos θ

]
− r

(
dθ

dt

)2 [cos θ
sin θ

]
= rα

[
− sin θ
cos θ

]
− rω2

[
cos θ
sin θ

]
– From these directions we can break α⃗ into two components and define a⃗(t) = a⃗t + a⃗r where

a⃗t = rα

[
− sin θ
cos θ

]
, which is parallel to v⃗, and a⃗r = −rω2

[
cos θ
sin θ

]
, which is opposite to the direction

of r⃗
– a⃗r is an inwardly directed acceleration that changes the direction of v⃗ to keep it in a circle (but

not the magnitude); it is referred to as the centripetal acceleration
– a⃗t changes only the magnitude of v⃗ and speeds the object up or slows it down in circular motion
– These two directional accelerations are always orthogonal to each other

– The magnitude of ∥a⃗r∥ = rω2 = v2

r
, and ∥a⃗t∥ = rα

• We can make our lives even easier by making our axes move as well, with the tangential axis being
always tangent to the circle of motion and the radial axis being aligned with the radius, and the z axis
going out of plane; with this configuration we can do things more naturally without breaking them up
into components

• The advantage of using ω instead of v⃗ is that in a spinning object, every point has the same ω but not
the same v⃗

Angular Kinematics
• The kinematic equations have rotational analogues
• For a constant α (angular acceleration):
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– α(t) = α0
– ω(t) = α0t + ω0

– θ(t) = 1
2α0t + ω0t + θ0

– And all the other ones # Lecture 26, Nov 22, 2021

Forces in Circular Motion

• Since there is an acceleration towards the centre of motion, there must be a force mv2

r
pushing the

object towards the centre (centripetal force)
– This means that as radius increases the force needed to pull the object into circular motion

decreases (at the extreme for an object moving in a straight line the radius is effectively infinite)
* Smaller radii means more change in direction per unit time (for the same ω) so the vector

change in velocity is greater
– As velocity increases the centripetal force also increases

Banked Curves
• On a banked curve, the normal force now has a component towards the middle of the track and the

vector is tilted
• The component towards the middle becomes the centripetal force
• The vertical component of normal force needs to be large enough to balance out gravity

• The masses cancel out and tan θ = v2

gr

Rotational Inertia
• Objects are harder to rotate the further you are from their centre of mass, so both radius and mass

affects inertia for rotation
• For example you hold a hammer from the end, far away from its centre of mass, so you can store more

energy and momentum in it for the strike
• The kinetic energy of a point mass that’s revolving is K = 1

2mv2 = 1
2m(rω)2 = 1

2(mr2)ω2

– Comparing this to 1
2mv2 we see that mr2 is the equivalent of m, so we write it as I = mr2 and

the angular kinetic energy Krot = 1
2Iω2

– I is the rotational inertia
• Rotational momentum works in the same way; if an object of mass m moves at speed v in a straight

line and then strikes another object with the same mass, all the momentum will be transferred, so the
second object now has momentum mv = mrω =⇒ rmv = Iω

– Define Iω as the angular momentum
– Since ω = v

r
the further along the radius of object 2 that object 1 hits, the easier it is to set object

2 into rotational motion, so we say that objects have more rotational momentum if their radius is
further

– Note since Iω = rmv an object moving linearly has angular momentum if we can define r; these
objects have angular momentum because they are able to set objects into rotational motion

– For a particle moving linearly we define r as the perpendicular distance from the line of action of
the particle and the rotational axis, or the cross product of the object’s velocity and the radius
vector

• Angular momentum is a conserved quantity
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Computing Rotational Energy

• If we apply K = 1
2mv2 to all particles, then for a rotating object the kinetic energy of the whole object

is K = 1
2Iω2 where I =

�
r2 dm

– Since every point in the object has the same ω, this is a constant
– Each piece of the object has energy 1

2v2 dm = 1
2Iω2 where the I for this piece is r2 dm

– Since ω is a constant we can pull it out of the integral to get 1
2ω2

�
r2 dm

– Caveat: The object cannot deform since that would change the r
– To compute this integral we say dm = ρ dV = ρ dx dy dz so for a 3D object this becomes a triple

integral
�

r2ρ(x, y, z) dx dy dz

* Generalizes to other dimensions
• Example: Linear thin rod (effectively 1 dimensional) I =

�
r2 dm = ρ

� b

a

x2 dx = 1
3ρ(b3 − a3), and if

the object is L long and attached to the axis this is equal to 1
3ρL3

– Note: Since density ρ = m

L
, this is also equal to 1

3mL2

Lecture 27, Nov 24, 2021
Parallel Axis Theorem

• The moment of inertia about some axis I = Icm + Md2 where d is the distance from this other axis and
the centre of mass axis

– This only works when the axis of I and Icm are parallel
• As a consequence of this, K = 1

2Iω2 = 1
2(Icm + Md2)ω2 = 1

2Icmω2 + 1
2Md2ω2 = 1

2Icmω2 + 1
2Mv2

– There is a component of kinetic energy from pure rotation about the centre of mass and another
from the translational kinetic energy

Torque and Angular Momentum Change
• Change in angular speed requires a force that acts in the tangential direction: torque
• Since any applied force only speeds up an object in rotation if it acts in the tangential direction, torque

is computed by Fr sin ϕ where ϕ is the angle between the radius and force vectors
– We can also look at the line of action and perpendicular lever arm r⊥
– We can also look at it as the vector cross product: τ⃗ = r⃗ × F⃗

* The magnitude of this vector is the magnitude of torque, and it points in the direction of the
axis of rotation

Lecture 28, Nov 25, 2021
Free Rotation

• When an object is allowed to rotate and translate freely, it will rotate around its centre of mass
• The centre of mass undergoes essentially no rotation and is in translational motion only; the translational

and rotational movements are essentially uncoupled
• This means we can decompose the kinetic energy into two parts: the translational kinetic energy of the

centre of mass, and the rotational kinetic energy of the rest of the object
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Extended Free Body Diagrams
• In an EFBD both rotation and translation are considered
• The rotation and translation are decoupled by separating it into the centre of mass translation and

rotation about the centre of mass
• Show both the torques (forces with a lever arm about the rotational axis) and other forces that pass

through the centre of mass
– In a regular FBD all forces are shown to act on the centre of mass, but in an EFBD the forces

have lever arms
– The EFBD can be used to calculate both translational acceleration and angular acceleration

Vector Nature of Rotation
• Rotations in 3D can be described by a vector where the magnitude of that vector is the rotational

angle/speed/acceleration and the direction is the axis of rotation
• θ, ω and α essentially only have two dimensions, counterclockwise or clockwise
• By convention counterclockwise rotation is positive and clockwise motion is negative
• The direction of the rotation vector (in or out of the plane) determines the direction of rotation; use

the right hand rule (curl your right hand’s fingers in the direction of rotation, then the thumb points in
the direction of the rotation vector)

• This vector describes the direction, magnitude, and axis of rotation so it completely describes the
rotation

• Angular momentum L⃗ can now be considered as the cross product L⃗ = r⃗ × p⃗, just like torque τ⃗ = r⃗ × F⃗
– Like torque we can consider either the angle between the lever arm and the linear momentum, or

the perpendicular lever arm
– Since the cross product points out of the plane, the angular momentum vector is pointed in the

direction of the axis of rotation

Relationship Between L⃗ = Iω⃗ and L⃗ = r⃗ × p⃗

• Consider a point mass in revolutionary motion with radius r⃗ and velocity v⃗
• We know v⃗ = ∥r⃗∥ω⃗
• Let r̂ be the unit vector in the radial direction and t̂ be the unit vector in the tangential direction, and

ẑ be the unit vector pointing out of the plane of rotation
• L⃗ = r⃗ × p⃗ = rr̂ × mvt̂ = rmvr̂ × t̂ = rmvẑ = r2mωẑ = Iω⃗

• For an extended object we can sum up all the small pieces of the mass for L⃗ =
∑

Iiω⃗ = Iωẑ

Lecture 29, Dec 1, 2021
Simple Harmonic Motion

• Simplest example of an oscillator is a mass on a spring

• The restoring force is −kx so F = ma = m
d2x

dt2 = −kx =⇒ d2x

dt2 + k

m
x = 0

– The solution to this DE is a sinusoid A cos(ωt + ϕ)

– Substituting this back in we get ω =
√

k

m
• Simple harmonic motion is like looking at uniform circular motion in one axis
• When the system oscillates, there is a constant conversion between kinetic and potential energy

– At the extremes all the energy is contained in the spring as potential energy
– When the system passes through equilibrium all the energy is kinetic
– In-between there’s a mix of the two

• Simple harmonic oscillators have the same period regardless of amplitude; no matter how far you pull
the spring when you start it, it will still take the same time to complete a full cycle (ω does not depend
on A)
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•


x(t) = A cos(ωt + ϕ)
v(t) = −Aω sin(ωt + ϕ)
a(t) = −Aω2 cos(ωt + ϕ
– Maximum displacement is A
– Maximum velocity is Aω
– Maximum acceleration is Aω2

Lecture 30, Dec 2, 2021
Approximation of Linear Restoring Forces

• Simple harmonic motion occurs whenever there is a linear restoring force
• Usually restoring forces can be approximated linearly even when they’re not (for small displacements)
• This means that there is usually simple harmonic motion occurring whenever there is a point of stable

equilibrium (forces attempt to restore the object to equilibrium instead of pushing it away or doing
nothing when the object goes away from equilibrium)

• If Fx = −kx then U = −
�

Fx dx = kx2

2 + U(0)

– k = d2U

dx2 is the curvature of the potential, and we can derive this approximate k even when the
restoring force is not truly linear

– This can be done for any potential but the motion is only truly harmonic for k very close to
equilibrium points

• A pendulum is such an example; the restoring torque is not truly linear but for small angles sin x ≈ x
– Potential is parabolic around the minimum for true harmonic motion
– Since the pendulum is constrained to circular motion, its potential (w.r.t. angle) is sinusoidal
– In a simple pendulum there is negligible mass in the string, the pendulum has a force mg pointing

straight down from gravity, acting on the mass
– The radial component is mg cos θ and the tangential component is mg sin θ

* The radial component is opposed by the tension in the string but the tangential component is
not

* Sum of the forces in the radial direction is mg cos θ − T = mar

* ar = −ac = rω2 pointing in the −r̂ direction towards the centre
* Since the pendulum doesn’t move radially this means that mg cos θ = T
* Forces in the tangent direction is mg sin θ without a counterbalancing force, so the tangential

acceleration is rα = laθ

* −mg sin θ = ml
d2θ

dt2 =⇒ d2θ

dt2 + mg

ml
sin θ = 0 is the equation of motion for the simple

pendulum
• This would be the same equation as simple harmonic motion if the sin θ was instead θ

* Behaviour is non harmonic if sin θ is not close to θ, when θ3

3! is not negligible

• Expanding this out the contribution is
θ3

3!
θ

, so we want θ2

6 ≪ 1
– In a physical pendulum in which the mass of the rod cannot be ignored, we can use I instead of m

and now the gravitational force acts on the centre of mass of the entire rod-mass system
* The torque applied is mgl sin θ where l is the distance of the centre of mass of the system

from the pivot

* For the physical pendulum
∑

τ = −mgl sin θ = Iαθ = d2θ

dt2 + mgl sin θ

I
= 0

• If I = ml2 then this would be the same as the simple pendulum equation

– Compare to simple harmonic motion d2x

dt2 + ω2x = 0
– Even for a spring, F = −kx is only an approximation
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• For any arbitrary (differentiable) potential we can always approximate its behaviour at minima using
parabolas, which lead to simple harmonic motion

Lecture 31, Dec 6, 2021
Simple Harmonic Oscillator Energy

• Recall a(t) = −Aω2 cos(ωt + ϕ) =⇒ Fx = −mAω2 cos(ωt + ϕ) = −mω2x(t)

• We can integrate this force to find the work done: W =
� x

x0

−mω2x dx = 1
2mω2(x2

0 − x2)

• W = ∆K =⇒ ∆K = 1
2mω2(x2

0 − x2)

• If we make the oscillator a closed system then ∆U = −∆K = 1
2mω2(x2 − x2

0)

– Since potential at x0 is arbitrary we can set this to 0 so ∆U = 1
2mω2x2

• The total energy is then E = U+K = 1
2mω2x2+ 1

2mv2 = 1
2mω2A2 cos2(ωt+ϕ)+ 1

2mω2A2 sin2(ωt+ϕ) =
1
2mω2A2

– The energy of a simple harmonic oscillator is constant and it only trades potential and kinetic
energy back and forth

– The energy is proportional to the square of the amplitude

Torsional Oscillators
• A disk suspended by a twisting fibre creates a torsional oscillator in simple harmonic motion

– τ = Iα
– For small angular displacements τ = −κ(ω − ω0) where κ is the angular equivalent of k

– The differential equation is then d2θ

dt2 = −κ

I
θ which is the same as the one for translational simple

harmonic motion, just with the translational terms substituted by rotational ones
• The equations of motion are identical to translational simple harmonic motion θ = θmax cos(ωt + ϕ)

and ω =
√

κ

I

Examples of Oscillating Systems

• All simple harmonic oscillators obey dxt

d+x
ω2x = 0

• Examples:

1. Mass on a spring: m
d2x

dt2 + kx = 0 =⇒ ω2 = k

m

2. Torsional oscillator: I
d2θ

dt2 + κθ = 0 =⇒ ω2 = κ

I

3. Pendulum: ml2 d2θ

dt2 + mgl sin θ ≈ ml2 d2θ

dt2 + mglθ = 0 =⇒ ω2 = g

l

4. Floating object bobbing in water: m
d2y

dt2 + g(ρAy) = 0 =⇒ ω2 = gρA

m
– A buoyant object will float in the water at some neutral point, and if pushed past this neutral

point then Fy ∝ y

5. Capacitor-inductor circuit L
d2Q

dt2 + Q

C
= 0 =⇒ ω2 = 1

LC

– Voltage drop across capacitor: Q

C

– Voltage drop across inductor: L
d2Q

dt2

25



Damped Oscillations
• In reality there is always some friction present, causing the oscillator to lose energy and thus amplitude
• The loss in amplitude is called damping
• Often the damping is caused by viscous friction, with the damping force opposing and proportional to

velocity F = −bv⃗

• Therefore Fx = −(kx + bvx) = max =⇒ m
d2x

dt2 + b
dx

dt
+ kx = 0

• The solution is given by x(t) = Ae− bt
2m cos(ωdt + ϕ) where ωd =

√
ω2 −

(
b

2m

)2
=
√

k

m
− b2

4m2

– A damped harmonic oscillator oscillates slower than the equivalent undamped oscillator
– Let the damping time constant γ = b

m
, with units of time

– The amplitude can be expressed as xmax = Ae
−γt

2

– The energy remaining is then E(t) = 1
2mω2x2

max =
(

1
2ω2A2

)
e−γt

• As b increases the oscillator decays faster, and when b > 2mω the system is overdamped and there are
no oscillations at all

Q Factor
• Q is the quality factor of an oscillator and measures the rate of decay

– Differs from ω in the sense that Q measures the number of oscillations
• Q ≡ ω

γ
= 2π

γT
• If Q = 2π then the energy falls to e−1 = 37% of its original energy in a single cycle
• A good bell has Q = 100, electronic circuits have Q = 106, quantum systems an have Q = 109
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