Lecture 7, Sep 23, 2021

Limit Theorems

- Limit theorems let us rigorously prove much more complicated limits, such as polynomials, by breaking it into manageable pieces, each provable with the epsilon-delta definition
- Some limit theorems: (assume $\lim f(x) = L$ and $\lim g(x) = M$ are given; both limits need to exist) 1. Additivity Limit Theorem: $\lim_{x \to c} [f(x) + g(x)] = L + M$
 - - Proof:
 - * Required $|f(x) + g(x) L M| < \varepsilon$ when $0 < |x c| < \delta$
 - * $|f(x) + g(x) L M| = |(f(x) L) + (g(x) M)| \le |f(x) L| + |g(x) M|$ (triangle) inequality)

 - * We are given that $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$, therefore: For some $\varepsilon_f = \frac{\varepsilon}{2}$, there is $0 < |x-c| < \delta_f$ such that $|f(x) L| < \varepsilon_f = \frac{\varepsilon}{2}$
 - For the same ε_f , there is $0 < |x c| < \delta_g$ such that $|g(x) M| < \varepsilon_f = \frac{\varepsilon}{2}$
 - * If x is inside both δ_f and δ_g bands, then $|f(x) + g(x) L M| \le |f(x) L| + |g(x) M| < |f(x) M| \le |f(x) \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$
 - * Therefore by picking $\delta = \min(\delta_f, \delta_g), 0 < |x c| < \delta \implies |f(x) + g(x) L M| < \varepsilon$, and the limit is proved!
 - 2. Product Limit Theorem: $\lim_{x \to a} f(x)g(x) = LM$
 - Proof:
 - * From the limits given: For some $\varepsilon_f = \sqrt{\varepsilon} > 0$ there is $0 < |x-c| < \delta_f \implies |(f(x)-L)-0| < \delta_f$ ε_f and $0 < |x - c| < \delta_g \implies |(g(x) - M) - 0| < \varepsilon_g$

 - $$\begin{split} \varepsilon_f & \text{and } 0 < |x-c| < \delta_g \implies |(g(x)-M)-0| < \varepsilon_g \\ * & \text{Therefore if } \delta = \min(\delta_f, \delta_g) \text{ then } 0 < |x-c| < \delta \implies |(f(x)-L)-0||(g(x)-M)-0| < \\ \sqrt{\varepsilon}\sqrt{\varepsilon} = \varepsilon, \text{ so } \lim_{x \to c} (f(x)-L)(g(x)-M) = 0 \\ * & 0 = \lim_{x \to c} (f(x)-L)(g(x)-M) = \lim_{x \to c} [f(x)g(x)-f(x)M-g(x)L+LM] = \lim_{x \to c} f(x)g(x) + \\ \lim_{x \to c} -Mf(x) + \lim_{x \to c} -Lg(x) + \lim_{x \to c} LM \text{ by the additive theorem} \\ * & \text{Therefore } \lim_{x \to c} f(x)g(x) = -\lim_{x \to c} -Mf(x) \lim_{x \to c} -Lg(x) \lim_{x \to c} LM = ML + LM LM = \\ ML \text{ (by } \lim_{x \to c} cf(x) = c \lim_{x \to c} f(x), \text{ proof of which is left as an exercise to the reader}) \\ \text{pomial Limit Theorem: } \lim_{x \to c} P(x) P(x) \text{ for polynomials } P(x) \end{split}$$

 - 3. Polynomial Limit Theorem: $\lim_{x\to c} P_n(x) = P_n(c)$ for polynomials $P_n(x)$ This can be trivially proven using the product and additivity limit theorems
 - 4. Rational Function Limit Theorem: $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M}$ if $M \neq 0$
 - Proof not included because I'm tired, see this link.
 - 5. Root Limit Theorem: $\lim_{n \to \infty} \sqrt[n]{f(x)} = L^{\frac{1}{n}}$
- Other limit theorems:
 - 6. Sandwich (aka Squeeze) Limit Theorem: If $\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L$ and $f(x) \le g(x) \le h(x)$ near but not necessarily at c, then $\lim g(x) = L$
 - g(x) may be a very complicated function, but we might be able to find simple functions f(x)and h(x) that bound g(x) near c for which we can easily find the limits of

Applying Limit Theorems

• Example:
$$\lim_{x \to -2} \frac{x^2 - x - 6}{x^2 - 4}$$
$$= \lim_{x \to -2} \frac{(x - 3)(x + 2)}{(x - 2)(x + 2)}$$
$$= \lim_{x \to -2} \frac{x - 3}{x - 2}$$
$$= \frac{\lim_{x \to -2} x - 3}{\lim_{x \to -2} x - 2} \text{ (rational function LT)}$$
$$= \frac{5}{4} \text{ (polynomial LT)}$$

- Rigorously logical proofs justify every line by citing an axiom or proven theorem
- regorously logical proofs justify every line by citing an axiom of proven theorem
 Example of using the Sandwich Theorem: lim x² cos² 1/x²
 Can't use the product LT because lim cos² 1/x² DNE (the function just oscillates faster and faster)
 Find bounding functions: 0 ≤ cos² 1/x² ≤ 1 ⇒ 0 ≤ x² cos² 1/x² ≤ x²
 Define f(x) ≡ 0, g(x) ≡ x² cos² 1/x², h(x) ≡ x²
 lim f(x) = 0 and lim h(x) = 0 by the polynomial LT, therefore lim g(x) = 0

