Lecture 5, Sep 20, 2021

Rigorous Definition of the Limit

- Test-definition (a type of implicit definition) for a new number $\lim_{x\to c} f(x)$, given:
 - 1. c, some particular value of x
 - 2. f(x), which may be undefined at c, but is defined for all x near c
 - 3. L, a candidate value for the limit
- Imposed: Some small positive $\varepsilon > 0$; we don't have the exact value and will have to allow for any $\varepsilon > 0$
- Test: Find some $\delta > 0$, such that for all $0 < |x c| < \delta$, $|f(x) L| < \varepsilon$
 - i.e. Find some δ such that all x within the x-band have corresponding values of f that fall in the y-band
- If the test passes, then the limit exists and $\lim f(x) = L$
- Since |x-c| > 0, x is never really equal to c, so we can simplify situations such as $\frac{x}{x}$ when c = 0legitimately

Figure 1: graph illustration

General Process

1. $\varepsilon > 0$ is imposed (it is given so we can and have to work with it)

- 2. Find a set of x values for which $|f(x) L| < \varepsilon$
 - Example: Prove $\lim_{x \to 0} \frac{10x + 5x^2}{x} = 10$ Here $\left|\frac{10x + 5x^2}{x} 10\right| = |10 5x 10| = |5x| = 5|x| < \varepsilon$
 - Notice how the x can be cancelled out rigorously now since x is not allowed to be zero
- 3. Look for a set of x values you will specify by $0 < |x c| < \delta$
 - Example: $0 < |x 0| = |x| < \delta$
- 4. Plug 3 into the left hand side of 2 and do algebraic manipulation until you get |f(x) L| <some expression involving only δ
 - Example: If $5|x| < \varepsilon$ for (2) and $|x| < \delta$, then $5|x| < 5\delta$
- 5. Guess δ in terms of ε and plug back in to get $|f(x) L| < \text{some expression involving } \varepsilon$, and then make the right hand side $< \varepsilon$
- Example: Choose δ = 1/5 ε, substitute into 5|x| < 5 ⇒ 5|x| < ε
 Now we've found (one of the) δ values for any given ε such that |f(x) < L| < ε for all 0 < |x-c| < δ, so we can conclude $\lim_{x \to c} f(x) = L$ 6. Compact: Given $\varepsilon > 0$, take $\delta = \cdots$ then when $0 < |x - c| < \delta$, $|f(x) - L| < \varepsilon$, therefore $\lim_{x \to c} f(x) = L$

Example

• Prove $\lim_{x \to 0} x^3 = 0$

$$-|x^{3}-0| = |x^{3}| = |x|^{3} < \varepsilon$$

$$-0 < |x-0| = |x| < \delta$$

$$-|x|^{3} < \delta^{3}$$

$$- \text{Take } \delta = \sqrt[3]{\varepsilon} \implies |x|^{3} < \varepsilon; \text{ QED}$$

– Note the choice of δ is not unique; anything that does the job is fine!