Lecture 32, Dec 1, 2021

Complex Arithmetic

- Complex addition: $z = a + ib, w = c + id \implies z + w = (a + c) + i(b + d), z w = (a c) + i(b d)$ - Properties are the same as regular addition:
 - 1. Commutative $z_1 + z_2 = z_2 + z_1$
 - 2. Associative $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$
 - 3. Triangle inequality $|z_1 \pm z_2| \le |z_1| \pm |z_2|$
 - The conjugate of the sum is the sum of the conjugate: $\overline{z+w} = \overline{z} + \overline{w}$
- Complex multiplication: (a+ib)(c+id) = (ac-bd) + i(ad+bc)
 - Product of a complex number and its conjugate is the square of the modulus: $z\bar{z} = |z|^2$
 - Properties are like regular multiplication:
 - 1. Commutative
 - 2. Associative
 - $\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$
 - In polar form: Let $z_1 = r_1(\cos \theta + i \sin \theta)$ and $z_2 = r_2(\cos \phi + i \sin \phi)$
 - * $z_1 z_2 = r_1 r_2 (\cos \theta + i \sin \theta) (\cos \phi + i \sin \phi)$

$$= r_1 r_2 ((\cos \theta \cos \phi - \sin \theta \sin \phi) + i(\sin \theta \cos \phi + \cos \theta \sin \phi))$$

$$= r_1 r_2 (\cos(\theta + \phi) + i \sin(\theta + \phi))$$

- * Therefore $|z_1 z_2| = |z_1| |z_2|$, and $\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$
- $\ast\,$ Graphically, a product multiplies the lengths and adds the angles
- * Generally, if we have multiple products, the modulus of the product is the product of the moduli and the argument of the product is the sum of the arguments
 - Example: Multiplication by z = i is a counterclockwise rotation by 90° but no change in the modulus

Division/reciprocals:
$$z^{-1} = \frac{1}{z} = \frac{1}{a+ib} = \frac{a-ib}{(a+ib)(a-ib)} = \frac{a-ib}{a^2+b^2} = \frac{z}{|z|^2}$$

- Since $|\bar{z}| = |z|$ and $\arg(\bar{z}) = -\arg(z)$, we have $\left|\frac{1}{z}\right| = \frac{|\bar{z}|}{|z|^2} = \frac{1}{|z|}$ and $\arg\left(\frac{1}{z}\right) = \arg\left(\bar{z}\frac{1}{|z|^2}\right) = -\arg(z)$
- $\arg(z)$
- Define the complex quotient $\frac{z}{z} = zw^{-1} - \frac{z\bar{w}}{z} = \frac{(a+ib)(c-id)}{(a-ib)} = \frac{(ac+bd) + i(ad-cb)}{(ac-b)}$

- Define the complex quotient $\frac{z}{w} = zw^{-1} = \frac{zw}{|w|^2} = \frac{(a+ib)(c-id)}{c^2+d^2} = \frac{(ac+bd)+i(ad-bc)}{c^2+d^2}$

$$- \left|\frac{z}{w}\right| = \frac{|z|}{|w|}$$
$$- \arg\left(\frac{z}{w}\right) = \arg(z) - \arg(w)$$

De Moivre's Theorem

- Let $z = \cos \theta + i \sin \theta$, then |z| = 1 and $\arg z = \theta$
- Then $|z^n| = |z|^n = 1$ and $\arg(z^n) = n \arg(z) = n\theta$
- Therefore $(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$

Complex Exponentials

- To define e^{ix} we can no longer take the log approach because $ix \notin$ the range of ln
- Let $f(x) = e^{ix}$ and $g(x) = \cos x + i \sin x$, then $f'(x) = ie^{ix} = if(x)$ and $g'(x) = -\sin x + i \cos x = ig(x)$, and also $f(0) = e^0 = i$ and $g(0) = \cos 0 + i \sin 0 = 1$
 - Euler therefore concluded that f(x) = g(x) so $e^{ix} = \cos x + i \sin x$
 - Note this is not a sufficient proof since we haven't proven the complex power rule, so this is more
 of a definition than a proof
- Therefore $e^z = e^{a+ib} = e^a(\cos b + i \sin b)$

Second Order Linear Differential Equations

- A general second order linear ODE has the form p(x)y'' + q(x)y' + r(x)y = g(x)
- To begin we look at second linear DEs with constant coefficients: y'' + ay' + by = g(x), and start where g(x) = 0, known as a homogeneous second order linear DE with constant coefficients
- Theorem: If $y_1(x)$ and $y_2(x)$ are both solutions of a homogeneous second order linear differential equation, then any linear combination $c_1y_1 + c_2y_2$ is also a solution
 - $\text{Proof:} \ (c_1y_1 + c_2y_2)'' + a(c_1y_1 + c_2y_2)' + b(c_1y_1 + c_2y_2) = c_1(y_1'' + ay_1' + by_1) + c_2(y_2'' + ay_2' + by_2) = c_1(y_1'' + ay_1' + by_1) + c_2(y_2'' + ay_2' + by_2) = c_1(y_1'' + ay_1' + by_1) + c_2(y_2'' + ay_2' + by_2) = c_1(y_1'' + ay_1' + by_1) + c_2(y_2'' + ay_2' + by_2) = c_1(y_1'' + ay_1' + by_1) + c_2(y_2'' + ay_2' + by_2) = c_1(y_1'' + ay_1' + by_1) + c_2(y_2'' + ay_2' + by_2) = c_1(y_1'' + ay_1' + by_1) + c_2(y_2'' + ay_2' + by_2) = c_1(y_1'' + ay_1' + by_1) + c_2(y_2'' + ay_2' + by_2) = c_1(y_1'' + ay_1' + by_1) + c_2(y_2'' + ay_2' + by_2) = c_1(y_1'' + ay_1' + by_1) + c_2(y_2'' + ay_2' + by_2) = c_1(y_1'' + ay_1' + by_1) + c_2(y_2'' + ay_2' + by_2) = c_1(y_1'' + ay_1' + by_1) + c_2(y_2'' + ay_2' + by_2) = c_1(y_1'' + ay_1' + by_1) + c_2(y_2'' + ay_2' + by_2) = c_1(y_1'' + ay_1' + by_1) + c_2(y_2'' + ay_2' + by_2) = c_1(y_1'' + ay_1' + by_1) + c_2(y_2'' + ay_2' + by_2) = c_1(y_1'' + ay_1' + by_1) + c_2(y_2'' + ay_2' + by_2) = c_1(y_1'' + ay_1' + by_1) + c_2(y_2'' + ay_2' + by_2) = c_1(y_1'' + ay_1' + by_1) + c_2(y_2'' + ay_2' + by_2) = c_1(y_1'' + ay_2' + by_2)$ 0 + 0 = 0
- Theorem: If $y_1(x)$ and $y_2(x)$ are linearly independent solutions to a homogeneous second order linear differential equation, then $c_1y_1 + c_2y_2$ is the general solution
 - Linearly independent means that $y_2 \neq cy_1$
- Proof is more involved and is covered in a later course We can try the solution $y = e^{rx} \implies (e^{rx})'' + a(e^{rx})' + be^{rx} = 0 \implies r^2 e^{rx} + are^{rx} + be^{rx} = 0 \implies$ $(r^2 + ar + b)e^{rx} = 0$

 - Thus, $y = e^{rx}$ is a solution if r is a root of $r^2 + ar + b$ $r^2 + ar + b = 0$ is known as the *characteristic* or *auxiliary equation* of this differential equation