Lecture 31, Nov 29, 2021

Linear Equations Continued

- Example: Logistic model $\frac{\mathrm{d}P}{\mathrm{d}t} = kP\left(1 \frac{P}{M}\right)$ with M(t) and k(t) as a function of time
 - First we have to make the equation linear since there is a P^2 term; substitute $z = \frac{1}{n} \implies P =$
- $\frac{1}{z} \implies \frac{\mathrm{d}P}{\mathrm{d}t} = -\frac{1}{z^2}\frac{\mathrm{d}z}{\mathrm{d}t}$ $-\frac{1}{z^2}\frac{\mathrm{d}z}{\mathrm{d}t} = \frac{k}{z}\left(1 - \frac{1}{ZM}\right) \implies \frac{\mathrm{d}z}{\mathrm{d}t} = -kz\left(1 - \frac{1}{ZM}\right) \implies \frac{\mathrm{d}z}{\mathrm{d}t} + kz = \frac{k}{M} \text{ and it is now linear}$ - If k and M are constant, then integrating factor: $H(t) = kt \implies$ integrating factor is e^{kt} $-z = e^{-kt} \left[\int e^{kt} \frac{k}{M} dt + C \right] = e^{-kt} \left[\frac{e^{kt}}{M} + C \right] = \frac{1}{M} + Ce^{-kt}$ - Therefore $P = \frac{1}{z} = \frac{M}{1 + MCe^{-kt}}$ • Example: Solving an RC (resistor-capacitor) circuit
- - Voltage drop across a capacitor is $\frac{Q}{C}$ where Q is the charge in coulombs and C is capacitance in Farads

-
$$E(t) = \frac{Q}{C} = IR$$
, but since $I = \frac{\mathrm{d}Q}{\mathrm{d}t}$, $E(t) = \frac{Q}{C} + R\frac{\mathrm{d}Q}{\mathrm{d}t}$

- In standard form, $Q' + \frac{1}{RC}Q = \frac{L(\iota)}{R}$
- $-H(t) = \int \frac{1}{RC} dt = \frac{t}{RC}$ so the integrating factor is $e^{\frac{t}{RC}}$ $-\frac{\mathrm{d}}{\mathrm{d}t}\left(e^{\frac{t}{RC}}Q\right) = e^{\frac{t}{RC}}\frac{E(t)}{R}$ $- Q = e^{-\frac{t}{RC}} \left(\int e^{\frac{t}{RC}} \frac{K}{E(t)} dt + A \right)$
- A nonlinear equation in the form $y' + p(x)y = q(x)y^r$ can be made linear by substituting $u = y^{1-r}$ $-u' = (1-r)y^{-r}$
 - $-y' + p(x)y = q(x)y^r \implies (1-r)y^{-r}y' + (1-r)y^{-r}y = (1-r)y^{-r}q(x)y^r \implies u' + (1-r)p(x)u = (1-r)y^{-r}q(x)y^r \implies u' + (1-r)p(x)u = (1-r)y^{-r}q(x)y^r \implies (1-r)p(x)u = (1-r)y^{-r}q(x)y^r \implies (1-r)p(x)u = (1-r)p(x)u$ (1-r)q(x)
 - Now we can apply the integrating factor
 - Equations in this form are called *Bernoulli Equations*

Complex Numbers

- Our number system is missing solutions to equations such as $x^2 = -1$, and like we extended the reals with CORA, we need more axioms to extend our number system
- Calculus of complex number systems is called complex analysis
- Define the *imaginary unit* $i^2 = -1$ or $i = \sqrt{-1}$, and a *complex number* z = a + ib where $a, b \in \mathbb{R}$ and • $\operatorname{Re}(z) = a, \operatorname{Im}(z) = b$
- We can represent the complex number a + ib as the point (a, b) on the complex plane (instead of a number line), where the horizontal axis is the real axis and the vertical axis is the imaginary axis
 - This is known as an Argand Diagram, and the plane is known as the complex plane, $\mathbb{C} = \{a + ib :$ $a, b \in \mathbb{R}$
- Complex numbers can be represented in a polar form (like polar vectors)
 - The distance from the origin of a complex number is known as the modulus: $|z| = |a+ib| = \sqrt{a^2 + b^2}$ * The modulus of a complex number is like the absolute value of a real number, and it is always real and nonnegative
 - The angle that the complex number makes with the real axis is the known as the argument: $\arg(z) = \theta$
 - * Arguments are not unique; $\arg(z) = \theta \implies \arg(z) = \theta + 2k\pi$ where $k \in \mathbb{Z}$

$$|z|\cos(\arg(z)) = a, |z|\sin(\arg(z)) = b, \text{ and } \tan(\arg(z)) = -\frac{b}{a} \text{ for } a \neq 0$$

- Let r = |z| and $\theta = \arg(z)$, then the polar representation of z is $z = r \cos \theta + ir \sin \theta$

• Definition: The complex conjugate of z = a + ib is $\overline{z} = a - ib$

– In an Argand diagram the conjugate is a reflection across the real axis