Lecture 30, Nov 26, 2021

Exponential Growth and Decay

- When a quantity changes at a rate proportional to the quantity itself, $\frac{df}{dt} = kf(t)$, and this leads to exponential growth or decay of $f(t) = Ce^{kt}$ where C is the initial condition
 - $k = \frac{1}{f} \frac{\mathrm{d}f}{\mathrm{d}t}$, using the chain rule backwards this is equal to $\frac{\mathrm{d}}{\mathrm{d}t} \ln f$

 - Integrating both sides, $\ln f = kt + C \implies f = e^{kt+c} = Ce^{kt}$ C is the initial value since $f(0) = Ce^0 = C$
 - -k is the growth or decay constant
- We can also characterize exponential growth by the doubling time: $2P_0 = P_0 e^{kt_2} \implies t_2 = \frac{\ln 2}{L}$

Radioactive Decay

- $\frac{\mathrm{d}N}{\mathrm{d}t} = -kN$ where k is always a positive $N(t) = N(0)e^{-kt}$
- Here we use the half-life and it basically works the exact same way with $t_{\frac{1}{2}} = \frac{\ln 2}{k}$
- Example: A year ago we had 4kg of a radioactive material; now we have 3kg. How much did we have 10 years ago?

 - t = 0 10 years ago, therefore $4 = N_0 e^{-9k}$ and $3 = N_0 e^{-10k}$ Dividing the equations we get $\frac{4}{3} = e^{k(-9+10)} = e^k \implies k = \ln \frac{4}{3} \approx 0.288$

$$-N_0 = 4e^{9k} = 53.3$$
kg

- The half life is
$$\frac{\ln 2}{k} = 2.4$$
 years

Compound Interest

- If interest is compounded at fixed intervals, then $V(t) = V(0)(1+i)^t$ where i is the interest rate
 - If we shorten this interval by n times then $V(t) = V(0) \left(1 + \frac{i}{n}\right)^{tn}$

$$-\lim_{\substack{n\to\infty\\e^{it}}} \left(1+\frac{i}{n}\right)^{nt} = \lim_{n\to\infty} \left(1+\frac{1}{\frac{n}{i}}\right)^{\frac{n}{i}it}, \text{ with the substitution } m = \frac{n}{i} \text{ it becomes } \lim_{m\to\infty} \left[\left(1+\frac{1}{m}\right)^{m}\right]^{it} = e^{it}$$

- Therefore at the maximum rate of compounding, $V(t) = V(0)e^{it}$

Drug Metabolism

- Drug metabolism can also be modelled as the rate of elimination being proportional to the current concentration, which leads to exponential decay $C_0 e^{-kt}$
- Typically we want to maintain the concentration of the drug in the blood between some therapeutic level and some other toxic level
- Using this model we can time the injection of the drugs so it stays between the two levels

Population Growth: The Logistic Model

- $\frac{\mathrm{d}P}{\mathrm{d}t} = kP$ is not a very accurate model of the population growth because it implies that the population grows exponentially without bound
- Usually population growth tends to approach 0 as the population reaches some carrying capacity due to various factors

• The logistic model models population as $\frac{\mathrm{d}P}{\mathrm{d}t} = kP\left(1-\frac{P}{M}\right)$ with M as the carrying capacity or max population

- As P approaches M the growth slows down, and when P = M, $\frac{\mathrm{d}P}{\mathrm{d}t} = 0$ and the population stops growing

• Integrating both sides:
$$\int \frac{1}{P\left(1-\frac{P}{M}\right)} dt = k \int dt$$

- Note that $\frac{1}{P\left(1-\frac{P}{M}\right)} = \frac{M}{P(M-P)} = \frac{1}{P} + \frac{1}{M-P}$
- $\int \frac{1}{P\left(1-\frac{P}{M}\right)} dt = k \int dt$
 $\implies \int \frac{1}{P} + \frac{1}{M-P} dP = \ln|P| - \ln|M-P| = kt + C$
 $\implies \ln\left|\frac{P}{M-P}\right| = kt + C$
 $\implies \frac{P}{M-P} = \pm e^{kt+c}$
 $\implies \frac{M-P}{P} = Ae^{-kt}$
 $\implies P(t) = \frac{M}{1+Ae^{-kt}}$
- Where $A = \frac{M-P_0}{P_0}$ and $P_0 = P(0)$

• When t is small, the growth is exponential, and then the growth slows down and approaches Mexponentially

Linear Equations

- A first-order linear ODE can be written in the form of y' + p(x)y = q(x)
- All first order linear ODEs have a general solution
- Example: $xy' + y = x^2$
 - Writing this in the standard form: $y' + \frac{1}{x}y = x$ for $x \neq 0$ The left hand side is the product rule applied to xy: (xy)' = xy' + y

 - So the equation becomes $(xy)' = x^2 \implies \int (xy)' dx = \int x^2 dx \implies xy = \frac{x^3}{3} + C \implies y = \frac{x^3}{3} + C$ $\frac{x^2}{3} + \frac{C}{x}$ - In general, we want to turn the left hand side into a product rule expression
- To set up the general case, set up $H(x) = \int p(x) dx$ (don't worry about constants for this)
- Therefore $\frac{\mathrm{d}}{\mathrm{d}x}e^{H(x)} = p(x)e^{H(x)}$
- Putting this back into the equation: $\frac{\mathrm{d}}{\mathrm{d}x}ye^{H(x)} = y'e^{H(x)} + ye^{H(x)}p(x) = e^{H(x)}(y'+p(x)y)$, and y'+p(x)yis just the left hand side of our equation, so it equals $q(x) - e^{H(x)}$ is known as the *integrating factor*, and by multiplying the equation through by this factor,
 - we end up with $\frac{\mathrm{d}}{\mathrm{d}x}ye^{H(x)} = e^{H(x)}q(x)$
- $ye^{H(x)} = \int e^{H(x)}q(x) \, \mathrm{d}x + C$, so our final answer is $y = e^{-H(x)} \left(\int e^{H(x)}q(x) \, \mathrm{d}x + C \right)$
- Usually the constant of integration is put in at the first stage there so that we don't forget about it • To solve these equations:
 - 1. Write the equation explicitly in the form of y' + p(x)y = q(x) and determine p(x) and q(x)

- 2. Find the integrating factor $e^{H(x)} = e^{\int p(x) dx}$
- 3. Multiply the equation by the integrating factor
- 4. Integrate both sides
- 5. Isolate for y
- Example: y' + 2y = 4 ⇒ p(x) = 2, q(x) = 4, so the integrating factor is e^{2x}, and e^{2x}y' + 2e^{2x}y = 4e^{2x} ⇒ d/dx(e^{2x}y) = 4e^{2x} ⇒ e^{2x}y = 4∫ e^{2x} dx + C = 2e^{2x} + C so the final answer is y = 2 + Ce^{-2x}
 We can see that the solution can be separated into 2 parts, one part as a particular solution (y = 2), and the other for solving y' + 2y = 0 this will come back in second order linear ODEs
- Example: Newton's law of cooling
 - $-\frac{\mathrm{d}T}{\mathrm{d}t} = -k(T-\tau),$ the change in temperature is proportional to the difference in temperature between the object and its surroundings
 - * Note the negative sign indicates that if the object is hotter than its surroundings then its temperature will decrease
 - $-T' + kT = k\tau \implies p(t) = k, q(t) = k\tau$ $\text{Integrating factor } e^{H(t)} = e^{kt}$ $-\frac{d}{d}(e^{kt} + T) = e^{kT}k\tau$

$$dt \left(\int e^{kt} k\tau \, dt + C \right) = \tau + C e^{-kt}$$

• To summarize, y' + p(x)y' = q(x) has solution $y = e^{-\int p(x) dx} \left[\int e^{\int p(x) dx} q(x) dx + C \right]$