Lecture 3, Sep 15, 2021

Review

1. Absolute value $|a| = \begin{cases} a & a \ge 0\\ -a & a < 0 \end{cases}$

- Easier to work with: $|a| = \sqrt{a^2}$
 - Note: Square roots are zero or positive or does not exist in the reals; e.g. $\sqrt{4}$ is only 2, not ± 2
 - Different question: What x satisfies $x^2 4 = 0$? This is a different question and is ± 2
- 2. Intervals of x values
 - 1. $x \in [a, b]$ closed interval $(a \le x \le b)$, which is a set of numbers; filled dots on the number line 2. $x \in (a, b)$ – open interval (a < x < b); open dots on the number line
 - 3. $x \in [a, b], x \in (a, b]$ mixed open/close intervals
 - 4. $x \in (-\infty, b]$ all $x \leq b$
 - Infinity is only okay to use inside an expression when the whole expression is defined, because ∞ is not a number
 - Closed brackets on infinity, e.g. $[a, \infty]$, is undefined because there is no useful definition for it
- 3. Functions: Given two sets of numbers x-set and y-set, a function is a rule that we specify that relates each x to one y value (very general)
 - x independent variable, y dependent variable; x could be anything as long as it produces a defined y
 - Note the asymmetry: each x can only relate to one y, but this requirement does not exist for y
 - Example: A table of x and y values could be a function
 - The span of the set of x values is the *domain*; the span of the set of y values is the *range*
 - Functions do not have to be **well-behaved**: e.g. $f(x) = \begin{cases} 10x+5 & x \neq 0 \\ DNE & x = 0 \end{cases}$ is a perfectly good

function; so is $f(x) = \begin{cases} 1 & x \text{ rational} \\ 0 & x \text{ irrational} \end{cases}$

- 4. Trigonometric functions:
 - Prefer algebraic definitions over geometric definitions
 - Prefer angles to be in radians where $2\pi rad$ is a full revolution (geometric definition of π)
 - For radius r the arc length corresponding to angle x is just rx (check: if $x = 2\pi$ then $rx = 2\pi r$)
- 5. Composition of functions: f(g(x))
 - e.g. if $f(x) = 3x^2 + 2$ and $g(x) = \sin x$ then $f(g(x)) = 3\sin^2 x + 2$ and $g(f(x)) = \sin(3x^2 + 2)$
- 6. Increasing/decreasing functions
 - Given $x_1 > x_2$ for any two values of x_1 and x_2 in some interval, if $f(x_1) > f(x_2)$, define f(x) to be **increasing** on this interval; if $f(x_1) < f(x_2)$, define f(x) to be **decreasing** on this interval
 - Example: Prove $x^2 + 2$ is increasing for x > 0
 - Take any $x_1 > x_2 > 0$

$$- 0 < x_1^2 < x_1 x_2 \text{ and } 0 < x_1 x_2 < x_2^2 \implies x_1^2 < x_2^2 \implies x_1^2 + 2 < x_2^2 + 2 \implies f(x_1) < f(x_2)$$

- 7. Even/odd functions
 - f(x) = f(-x) is an even function; f(x) = -f(-x) is an odd function
- 8. Basic Arithmetic Theorem (BAT1)
 - Prove a true equality: e.g. 1 + 2 = 6 3
 - You can add, subtract, multiply, and divide both sides of an equality by the same factor and get another true equality
 - This is a theorem and can be proven
 - Prove a true inequality: e.g. 3 < 5
 - Get another true inequality by applying the same operations, **except** if multiplication or division is involved *and* the factor is negative, then the direction of the inequality changes
 - Also a theorem that can be proved using axioms