Lecture 29, Nov 24, 2021

Solutions to Differential Equations

- Definition: A function is a solution of a DE if the substitution of the function and its derivatives lead to an identity.
 - Example: $\frac{dy}{dx} \frac{y}{x} = 2x + \frac{4}{x}$ has solution $y(x) = 2x^2 + 7x 4$
- The basic integration process is like a very simple differential equation; $\frac{dy}{dx}f(x) \implies y(x) = F(x) + C$
 - There is not one unique solution to a differential equation; generally the number of free parameters in the solution to a DE is equal to its order (e.g. first order DEs have 1 constant, second order DEs have 2)
 - The values of these constants can be determined by substituting in known values from initial conditions
- The general solution to an n-th order DE is an n-parameter family of solutions that include all the solutions to the DE.
- The *particular solution* is a member of the general solutions family for the DE and have specific values assigned to the constants from initial values
- An *initial value problem* consists of a DE and a number of initial values for the function; a *boundary* value problem is a DE and some known values not at 0

Separable Differential Equations

- Not all differential equations can be solved analytically, but some are easier to solve than others
- A general first-order DE can be expressed as $\frac{dy}{dx} = F(x,y)$; if F(x,y) can be separated into F(x,y) =a(x)f(y) or $\frac{g(x)}{x}$, then it is *separable* and can be solved easily

$$(x)f(y) \text{ of } \frac{h(y)}{h(y)}, \text{ then it is separate and can be solved easily}$$

$$-\frac{dy}{dx} = \frac{g(x)}{h(y)} \implies \int h(y) \, dy = \int g(x) \, dx$$

$$* \frac{dy}{dx} = \frac{g(x)}{h(y)} \implies h(y) \frac{dy}{dx} = g(x) \implies \int h(y) \frac{dy}{dx} \, dx = \int g(x) \, dx \implies \int h(y) \, dy = \int g(x) \, dx$$

- * Note: Assume $\frac{\mathrm{d}}{\mathrm{d}y}H(y) = h(y)$ then $\frac{\mathrm{d}}{\mathrm{d}x}H(y) = h(y)\frac{\mathrm{d}y}{\mathrm{d}x}$ by the chain rule, which means that $\int h(y) \frac{\mathrm{d}y}{\mathrm{d}x} \,\mathrm{d}x = \int \frac{\mathrm{d}}{\mathrm{d}x} H(y) \,\mathrm{d}y = H(y) = \int h(y) \,\mathrm{d}y$
- Example: $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}e^xy^2$ with y(0) = -1 $-\frac{1}{2}e^{x}y^{2} = \frac{e^{x}}{\frac{2}{y^{2}}} \implies \int \frac{2}{y^{2}} \,\mathrm{d}y = \int e^{x} \,\mathrm{d}x \implies -2y^{-1} = e^{x} + C \implies y = -\frac{2}{e^{x} + C}$ is the general solution
 - Use the initial condition gets us $y = -\frac{2}{1+C} = -1 \implies C = 1$ so the particular solution is

$$y = -\frac{z}{e^x + z}$$

- Note this equation is nonlinear

- Example: Resistor-Inductor (RL) circuits
 - Suppose there is a resistor I and inductor L connected in series to a supply voltage of E(t), then by Ohm's law the voltage drop across the resistor is V = RI and the voltage drop across the inductor is $V = L \frac{dI}{dt}$, so $E(t) = L \frac{dI}{dt} + RI$ models the current I- Rewrite as $\frac{dI}{dt} = \frac{V - RI}{L} \implies g(x) = 1, h(y) = \frac{L}{V - RI} \implies \int \frac{L}{V - RI} dI = \int dt$

 - After substituting in the numbers we can easily integrate and find a solution

Orthogonal Trajectories

- Given a family of curves, an *orthogonal trajectory* is a trajectory that passes through every one of these curves at 90 degrees
- The tangent of the trajectory is everywhere orthogonal to the tangent of the curves, so $f' = -\frac{1}{a'}$
- Example: $y^2 = kx^3$
 - Using implicit differentiation, $2yy' = 3kx^2 \implies y' = \frac{3kx^2}{2y}$
 - To get the general y', substitute back $y^2 = kx^3 \implies k = \frac{y^2}{x^3} \implies y' = \frac{3\left(\frac{y^2}{x^3}\right)x^2}{2y} = \frac{3}{2}\frac{y}{x}$ Then the tangent to the curve we want is $y' = \frac{-2x}{3y}$ and this is a separable differential equation so
 - 2.2 2

$$\int 3y \, \mathrm{d}y = -\frac{2x}{2} \mathrm{d}x \implies \frac{3y^2}{2} = -x^2 + C \implies 3y^2 + 2x^2 = 2C$$

This is a family of ellipses

– This is a family of ellipses