Lecture 27, Nov 29, 2021

Approximation of e”
o Example: Show ¢® > 1+ x for > 0
— First show that e¢® > 1 using integrals, and then take this back into the integral and show that
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e” > 1+ x, then repeat this more to get ¢¥ > 1+ 5;102 + gx?’ + -
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— Key identity: e* =1 —|—/ etdt
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— Note that €® =1 and —e® = €® > 0 so it is always positive and increasing, and e > 1 for 2 > 0
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— We can continue this process making use of e > 1+ z, so e””zl—i—/ etdt>1+/ (1+¢t)dt=
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— We can do this again one more time: e* = 1+/ etdt > 1+/ (1+t+ 5>dt: 1+x—|—?+€
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— Using induction we can show e* > 1+z+§+§+~~+—'
* Note we don’t yet know that this infinite series converges to e
General Exponential Function
o Definition: An irrational power z* = ¢*!"*
'
— Thus with this extended definition we have 2" +* = z"z% 2" % = x—s, (") = 2™ for r;s € R
x
provided = > 0
o We can extend the power rule to irrational powers
d . T
e« Proof: — g7 = Serine _grine [T T T rz" !, and with this we can also extend the reverse
dx dz x x
power rule for integrals
o Since x” is defined using the natural exponential, it has the same properties
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e Example: —2a*
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e Exponentials with bases other than p: d—p“
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e In general —p" = p"1
n general ——p* = p*In(p) — 1
e The integral form is /px dox = l—px + C where p > 0,p # 1
np
Logarithm With Other Bases
1 1 x 1 nx n T
o Define f(x) = % and g(z) = p®, then f(g(x)) = lr;]; = x% =z and g(f(x)) zp({w) = ehip e =

e™* =z, so they are inverses

1
o Define log,(r) = fl—x for p > 0,p # 1, note log,,(p”) = = as they are inverses of each other
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Estimating e
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e To find an upper bound, In { 1 + — :/ fdt>/ T di, since 1 <t < ——
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o Combining these two we get (1 + ) <e< (1 + )
n n

e As n tends to infinity, the difference between n and n + 1 becomes small and the two bounds close in
on each other to converge to the true value of e
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e = lim (1 + > by a squeeze-theorem like argument
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