Lecture 26, Nov 17, 2021

Logarithmic Differentiation

o If we want to differentiate a lengthy product g(z) = g1(x)ga2(z) - - - gn(x), we can take the log of both
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, and multiply by g(x) to get ¢'(z) = g(x) E g’gxi (known as logarithmic differentiation)
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sides to get In|g(z)| = In|g1 ()| + In|g2(x)| + - - - + In|g,(z)|, then differentiate
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— Notice that if a term is in the denominator it is subtracted instead, since the logarithm of that

term is negative

The Natural Exponential

o Using the natural logarithm, we can extend the domain of the exponential to irrational numbers
e From the IVT we know that for some irrational z, In z will take on that value at some point
o Definition: Let z be an irrational; then e is the unique number such that Ine® = z
e Definition: The exponential function exp x = e*, defined as the number such that Ine” =z
e Properties of the exponential:
1. In is the inverse of the exponential: Ine®” = z for € R as per our definition of the exponential
and irrational powers

2. €® > 0, which comes from the fact that Ine® is only defined for positive e*
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— From In(e® - €*) =Ine® + Ine® =a+ b =Ine*™?
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7. In a similar manner e ® = — and e * = —, both of which come from the logarithm
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9. d—e’” = ke*® from the chain rule
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