Lecture 26, Nov 17, 2021

Logarithmic Differentiation

- If we want to differentiate a lengthy product $g(x) = g_1(x)g_2(x)\cdots g_n(x)$, we can take the log of both sides to get $\ln|g(x)| = \ln|g_1(x)| + \ln|g_2(x)| + \dots + \ln|g_n(x)|$, then differentiate $\frac{g'(x)}{g(x)} = \frac{g'_1(x)}{g_1(x)} + \frac{g'_2(x)}{g_2(x)} + \frac{g'_2(x)}{g$
- $\cdots + \frac{g'_n(x)}{g_n(x)}, \text{ and multiply by } g(x) \text{ to get } g'(x) = g(x) \sum_{i=1}^n \frac{g'_i(x)}{g_i(x)} \text{ (known as logarithmic differentiation)}$ Example: $\frac{\mathrm{d}}{\mathrm{d}x} \frac{x^4(x-1)}{(x+2)(x^2+1)} = \frac{x^4(x-1)}{(x+2)(x^2+1)} \left[\frac{4x^3}{x^4} + \frac{1}{x-1} \frac{1}{x+2} \frac{2x}{x^2+1} \right]$ Notice that if a term is in the denominator it is subtracted instead, since the logarithm of that
 - - term is negative

The Natural Exponential

- Using the natural logarithm, we can extend the domain of the exponential to irrational numbers
- From the IVT we know that for some irrational z, $\ln x$ will take on that value at some point
- Definition: Let z be an irrational; then e^z is the unique number such that $\ln e^z = z$
- Definition: The exponential function $\exp x = e^x$, defined as the number such that $\ln e^x = x$ ٠
- Properties of the exponential:
 - 1. In is the inverse of the exponential: $\ln e^x = x$ for $x \in \mathbb{R}$ as per our definition of the exponential and irrational powers
 - 2. $e^x > 0$, which comes from the fact that $\ln e^x$ is only defined for positive e^x
 - 3. $e^0 = 1$ from $\ln 1 = 0$
 - 4. $\lim_{x \to -\infty} e^x = 0$ 5. $e^{\ln x} = x$

 - 6. $e^{a+b} = e^a \cdot e^b$

- From
$$\ln(e^{a} \cdot e^{b}) = \ln e^{a} + \ln e^{b} = a + b = \ln e^{a+b}$$

7. In a similar manner $e^{-b} = \frac{1}{e^b}$ and $e^{a-b} = \frac{e^a}{e^b}$, both of which come from the logarithm

8.
$$\frac{d}{dx}e^x = e^x$$

 $-\ln e^x = x \implies \frac{d}{dx}\ln e^x = \frac{1}{e^x}\frac{d}{dx}e^x = \frac{d}{dx}x = 1 \implies \frac{d}{dx}e^x = e^x$
9. $\frac{d}{dx}e^{kx} = ke^{kx}$ from the chain rule

10.
$$\int e^{x} dx = e^{x} + C$$

11.
$$\int e^{g(x)} g'(x) dx = e^{g(x)} + C$$