Lecture 25, Nov 15, 2021

Properties of $\ln x$

- Further properties of $\ln x$:

 - 1. Defined on $(0, \infty)$, and $\frac{d}{dx} \ln x = \frac{1}{x}$ 2. $\ln x$ is continuous since it is differentiable
 - 3. For all x > 1, $\ln x > 0$, since the integral area is always positive
 - 4. For 0 < x < 1, $\ln x < 0$ as follows from the previous point
 - 5. $\ln(a+b) = \ln a + \ln b$
 - This can be proven using a different way
 - $-\frac{\mathrm{d}}{\mathrm{d}x}\ln x = \frac{1}{x}, \text{ and } \frac{\mathrm{d}}{\mathrm{d}x}\ln(ax) = \frac{1}{ax} \cdot a = \frac{1}{x}$ Since $\ln x$ and $\ln(ax)$ have same derivative, they differ by a constant, so

 - Therefore $\ln(ax) = \ln(x) + C$, and if we let $x = 1 \implies \ln a = 0 + C = C$, therefore $\ln(ax) = \ln(x) + \ln(a)$

6.
$$\ln\left(x^{\frac{p}{q}}\right) = \frac{p}{q}\ln x$$

- We can show this in the same way as the one above

$$\frac{\mathrm{d}}{\mathrm{d}x}\ln\left(x^{\frac{p}{q}}\right) = \frac{1}{x^{\frac{p}{q}}} \cdot \frac{p}{q} x^{\frac{p}{q}-1} = \frac{p}{q} \frac{1}{x} = \frac{\mathrm{d}}{\mathrm{d}x} \frac{p}{q} \ln x$$

- Therefore $\ln\left(x^{\frac{p}{q}}\right) = \frac{p}{q}\ln x + C$, and now if we let x = 1, then 0 = C
- 7. The range of $\ln x$ is $(-\infty, \infty)$ (i.e. it is unbounded)
 - Proof that ln is unbounded as $x \to \infty$: Show that for M > 0 imposed, there exists a x_0 such that $x > x_0 \implies \ln x > M$
 - * Begin with $\ln 2 = \int_{1}^{2} \frac{1}{t} dt$, and since the integrand is always positive, $\ln 2 > 0$
 - * Therefore, we can always find some positive n such that $n \ln 2 > M$ no matter how big M is, so choose $x_0 = 2^n$
 - * When $x > x_0 = 2^n$, we have $\ln x > n \ln 2 > M$, therefore x is unbounded above
- A similar argument follows for when $x \to 0$, therefore x = 0 is a vertical asymptote 8. $\ln e = 1$
 - Since the $\ln x$ is unbounded and starts at 0 when x = 1, it must take on the value of 1 sometime, so we call this value e
- 9. Convention $\ln x = \log_e(x)$
- 10. $\frac{\mathrm{d}}{\mathrm{d}x} \ln x = \frac{1}{x} > 0$ so it is increasing, $\frac{\mathrm{d}^2}{\mathrm{d}x^2} \ln x = -\frac{1}{2x} < 0$ so it is concave down

Graphing Logarithms

- Chain rule with logarithms: $\frac{d}{dx} \ln u = \frac{1}{u} \frac{du}{dx}$ When graphing a logarithm note the argument can only be positive, and when it approaches zero, the value of the logarithm approaches negative infinity
- x intercepts when the argument is 1

Using Logarithms to Integrate and Differentiate

- $\int \frac{1}{x} dx = \ln|x| + C$, absolute value because the domain of $\frac{1}{x}$ includes the negative numbers
- More generally, $\int \frac{g'(x)}{g(x)} dx = \ln|g(x)| + C$ for $g(x) \neq 0$ (by substitution)

• Example:
$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx$$
$$= -\int \frac{1}{u} \, du$$
$$= -\ln|u|$$
$$= -\ln|\cos x| + C$$
$$= \ln|\sec x| + C$$
• Example:
$$\int \cot x \, dx = \int \frac{\cos x}{\sin x} \, dx$$
$$= \int \frac{1}{u} \, du$$
$$= \ln|u| + C$$
$$= \ln|\sin x| + C$$
• Example:
$$\int \sec x \, dx = \int \sec x \cdot \frac{\sec x + \tan x}{\sec x + \tan x} \, dx$$
$$= \int \frac{\sec^2 x + \sec x \tan x}{\sec x + \tan x} \, dx$$
$$= \int \frac{1}{u} \, du$$
$$= \ln|u| + C$$
$$= \ln|u| + C$$
$$= \ln|u| + C$$
$$= \ln||u| + C$$
$$= \ln||e| + C$$