Lecture 23, Nov 3, 2021

Volumes by Cylindrical Shells

- For volumes that may be difficult to integrate with the disk and washer method
- E.g. y = f(a) rotated around the y axis
- Each slice of the area under the curve of f is going to be rotated and forms a hollow cylindrical shell - Height: $f(x_i^*)$, radius x_i^* , and thickness Δx_i ; the volume of each shell is the area of the rectangle
 - multiplied by the circumference at that location, $\Delta V = f(x_i^*) \Delta x_i \cdot 2\pi x_i^*$ - Taking the limit as the number of shells approaches infinity, $V = \int_{-\infty}^{0} 2\pi x f(x) dx$
- If the region is defined by the area between two curves then $V = \int_a^b 2\pi x (f(x) g(x)) dx$
- Similarly we can also rotate around the x axis instead by replacing all the x with y
 - Note that in the washer method, rotation around the x axis leads to integration wrt x, but for the shell method it's the opposite; rotation around the x axis leads to integration wrt y
- Example: Rotate the area between $y^2 x^2 = 1$ and y = 2 about the x axis
 - We can take advantage of symmetry
 - For a given y value, $x = \sqrt{y^2 1}$; the minimum y occurs when $x = 0 \implies y = 1$
 - This leads to the integral $V = 2 \int_{-1}^{2} 2\pi y (\sqrt{y^2 1}) \, dy$
 - To evaluate, substitute $u = y^2 1 \implies du = 2y \, dy \implies V = 4\pi \int_0^3 \sqrt{u} \, du$

$$= 2\pi \left[\frac{2}{3}u^{\frac{3}{2}}\right]_{0}^{3}$$
$$= 4\sqrt{3}\pi$$

• If rotating about an axis that is parallel to one of the principle axes, subtract an offset $V = \int_{-\infty}^{\infty} 2\pi x (f(x) - x) dx$ $k) \, \mathrm{d}x$

Average Value of a Function

- Since the average of a set of discrete numbers is a_{avg} = a₁ + a₂ + ··· + a_n/n, the average of a function taken at discrete points is f_{avg} = f(x₁^{*}) + f(x₂^{*}) + ··· + f(x_n^{*})/n
 If we consider a uniform partition, then Δx = b a/n ⇒ n = b a/Δx/Δx = f(x_n^{*}) + f(

- If we substitute this into the equation above then $f_{avg} = \frac{f(x_1^*) + f(x_2^*) + \dots + f(x_n^*)\Delta x}{b-a}$ Take the limit $n \to \infty$, the sum turns into an integral $f_{avg} \equiv \frac{1}{b-a} \int_a^b f(x) \, dx$ (note this is a definition of the average)
- This is defined as the average value of f
- This leads to the Mean Value Theorem for Integrals: For f continuous on [a, b], there exists $c \in [a, b]$ such that $f(c) = f_{avg} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$; a continuous function must equal its average value at some point

- Proof: Let
$$F(x) = \int_{a}^{x} f(t) dt$$
, then by the MVT there exists c such that $F'(c) = \frac{F(b) - F(a)}{b - a}$ for $c \in [a, b]$; therefore $F'(c) \implies f(c) = \frac{\int_{a}^{b} f(t) dt - \int_{a}^{a} f(t) dt}{b - a} = \frac{1}{b - a} \int_{a}^{b} f(t) dt$

This is also a special case of the second MVT for g(x) = 1

- The Second Mean Value Theorem for integrals: For nonnegative g, $\int_{a}^{b} f(x)g(x) dx = f(c) \int_{a}^{b} g(x) dx$ where $c \in [a, b]$
 - Proof: By the EVT f has a maximum and minimum $m \leq f(x) \leq M$; since g is nonnegative, $mg(x) \le f(x)g(x) \le Mg(x) \implies m \int_{a}^{b} g(x) \, \mathrm{d}x \le \int_{a}^{b} f(x)g(x) \, \mathrm{d}x \le M \int_{a}^{b} g(x) \, \mathrm{d}x$ * If g is everywhere zero then the theorem holds true since 0 = 0

 - * Otherwise we can divide by $\int_{a}^{b} g(x) \, \mathrm{d}x$ to get $m \leq \frac{\int_{a}^{b} f(x)g(x) \, \mathrm{d}x}{\int_{-}^{b} g(x) \, \mathrm{d}x} \leq M$
 - * By the IVT, there exists a $c \in [a, b]$ such that $f(c) = \frac{\int_a^b f(x)g(x) \, dx}{\int_a^b g(x) \, dx}$, since this value is between m and M and f takes on all values in that interval
 - * Therefore there exists $c \in [a, b]$ such that $f(c) \int_{a}^{b} g(x) dx = \int_{a}^{b} f(x)g(x) dx$ Notes: f(c) is not the average of f as from the first MVT; this is a weighted average where g(x) is
 - the weight
 - Think of it like a centre of mass where g(x) describes the density, so $\frac{\int_a^b f(x)g(x) \, dx}{\int_a^b g(x) \, dx}$ is the weighted

average/centre of mass