Lecture 2 (Online)

Defining Numbers

- Numbers are the most basic elements and math and thus can't be defined explicitly
- Numbers are defined implicitly by imposing the **axioms**, basic rules, that they have to satisfy
- Some axioms:
 - 1. Commutative law x + y = y + x
 - 2. Associative law (x + y) + z = x + (y + z)
 - 3. Distributive law x(y+z) = xy + xz
 - 4. Existence of additive identity 0 and multiplicative identity 1
 - 5. Existence of additive inverses -x and multiplicative inverses x^{-1} for $x \neq 0$
- There should be as few axioms as possible as axioms are unprovable; the more axioms, the more the risk of contradiction
- Theorems arise from definitions and axioms and are provable: Example: 4 = 2 + 2; there is no limit to the number of theorems
- Some definitions:
 - 1. Positive integers ("natural numbers"): $1, 2, 3, \ldots; 2 \equiv 1 + 1$
 - 2. Rational numbers: $\frac{a}{b} \equiv a \cdot \frac{1}{b}$ where a and b are integers and $b \neq 0$ The axiom for the existence of inverses combined with this creates rational numbers
 - 3. Roots, other algebraic (root of a polynomial) irrational numbers; e.g. $q^2 2 = 0$
 - Axiom 5 only creates rational numbers, so a new one is needed for irrational numbers
 - 4. Transcendental irrationals; e.g. π or e
- Axiom: Completeness of the Reals Axiom (CORA): Every non-empty set of real numbers that is bounded above has a least upper bound among the real numbers; this creates irrationals
 - A set of real numbers S_1 is bounded above iff there exists some ubS_1 such that $x \leq ubS_1$ for all $x \in S_1$; the least upper bound $lubS_1$ is the least of the ubS_1
 - * The least upper bound does not have to be in S
 - Example: $S_2 = \{x : x^2 < 2\}$
 - * $lubS_2$ intuitively would satisfy $lubS_2^2 = 2$ and so $lubS_2 = \sqrt{2}$
 - * By imposing CORA, $\sqrt{2}$ and all irrationals (including transcendental irrationals) have been created
 - * However proving $lubS_2 = \sqrt{2}$ rigorously is very difficult