Lecture 17, Oct 20, 2021

Summation Theorems
1. Constant multiple: Z aa; = « Z a;
2. Additivity/distributive: Z(ai +b) = Z a; + Z b;
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Limits of Sums

o If f(n Z a;, then we can take lim f(z)= nhﬁrr;o Z a;
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o Example: lim fz ()
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Area Under a Curve

e How do we define the area under a curve?
 Definition: A partition is a way to divide a closed interval [a, b] into a finite number of subsets, including
aand b
— e.g. [xo,.’L‘l], [xl,l‘g], ce
— We can then define Ax; = x; — x;_1
o Definition: The norm of a partition P is || P||, defined as the length of the longest subinterval
o In every subinterval there is an x} which lies within the interval, which makes the area of each rectangle

A; = f(x]) A,

e The total area is lim VAV
I1PlI—0 ¢ Z /=

— We can’t simply make n — oo because the partitions may not be equal in size



e In practice we usually work with equal sized intervals, but sometimes in numerical integration it might
be useful to vary the size of the subintervals

T
e Example: y =cosz, 0<z<b< 5 with a regular partition Az; = — = || P||
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