Lecture 15, Oct 15, 2021

Horizontal Asymptotes/Limits at Infinity

- Definition: $\lim_{x\to\infty} f(x) = L$ means that $\forall \varepsilon > 0, \exists A \text{ such that } x > A \implies |f(x) L| < \varepsilon$; this is a *horizontal asymptote* of f(x)
- i.e. we can find f values as close to L as possible by going to large enough x values
- Limit theorems also exists for limits at infinity just like regular limits
- Theorem: $\lim_{x \to \infty} \frac{1}{x^r} = 0 \text{ for } r > 0$ - Proof: For all $\varepsilon > 0$, choose $A = \varepsilon^{-\frac{1}{r}}$ * $x > A = \varepsilon^{-\frac{1}{r}}$ $\implies x^r > \varepsilon^{-1}$ $\implies \frac{1}{x^r} < \varepsilon$ $\implies \left|\frac{1}{x^r}\right| < \varepsilon$ * Thus $x > A \implies \left|\frac{1}{x^r} - 0\right| < \varepsilon$, so $\lim_{x \to \infty} \frac{1}{x^r} = 0$

Slant Asymptotes

Definition: If lim_{x→∞} [f(x) - (mx + b)] = 0, then the line y = mx = b is a slant asymptote to f(x) at +∞
As always this does not mean that the limit at infinity exists, but it gives us more information than simply saying that lim_{x→∞} f(x) DNE

Max/Min Problems

- General checklist for max/min problems:
 - 1. Critical points
 - Find derivative, second derivative, determine concavity if it helps
 - 2. Endpoints
 - Find the domain, as constrained by the question statement
 - Find value at end points
 - 3. Check interior points
 - Find value at internal local extrema
 - 4. Check limit at $\pm \infty$ if the question allows it
 - 5. Compare values and decide the \max/\min
 - Make sure to state the answer!
- Example: A string 28cm long is to be cut into 2 parts to make a square and a circle. Where should the cut be made to get a) the maximum area and b) the minimum area?
 - Let the square have side x and the circle have radius y
 - We know that $28 = 4x + 2\pi y$ therefore we can relate x and y by $y = 7 \frac{\pi}{2}x$, which allows us to eliminate one of the variables
 - The total area is then $A(x,y) = x^2 + \pi y^2 \implies A(y) = \left(7 \frac{\pi}{2}y\right)^2 + \pi y^2$
 - At this point we need to establish the domain since the \max'/\min can be at an endpoint
 - * $y \ge 0$ and $x \ge 0$ due to physical constraints, so the domain is $\left[0, \frac{14}{\pi}\right]$

-
$$A(0) = 49, A\left(\frac{14}{\pi}\right) = \pi \frac{14^2}{\pi^2} \approx 60$$

- Note A is a polynomial of y and therefore is continuous by the polynomial continuity theorem; therefore by the EVT for this *closed* interval there is an absolute max/min

- * Sometimes there is not an absolute max/min!
 * Note the importance of establishing the domain right away, so we know the function is continuous over the closed interval 1 2 ``

$$-A'(y) = -\pi \left(7 - \frac{pi}{2}y\right) + 2\pi y = -7\pi + y \left(\frac{\pi^2}{2} + 2\pi\right)$$

$$-A''(y) = \frac{\pi^2}{2} + 2\pi > 0 \text{ therefore } A(y) \text{ is concave up}$$

$$-A'(y) = 0 \implies y_{crit} = \frac{7}{2 + \frac{\pi}{2}} \approx 2$$

$$-x_{crit} \approx 7 - \pi \approx 4$$

$$-A(y_{crit}) \approx 28$$

$$-\text{ Since } A\left(\frac{14}{\pi}\right) > A(0) > A(y_{crit}), \text{ the absolute max is } A\left(\frac{14}{\pi}\right) \text{ and the absolute min is } A\left(\frac{14}{\pi}\right)$$
* i.e. the max occurs when not cutting the string and using it all for the circle; the min occurs when cutting the string at $\frac{14}{\pi}$ (about 12 and 16cm lengths) for the square and circle respectively

– Since A' is a polynomial it always exists