Lecture 14, Oct 13, 2021

Bounding Estimations Using the Mean Value Theorem

- From last lecture we used differentials to estimate values: $29^{\frac{1}{3}} \approx 3.074$ using $f(x) = \sqrt[3]{x}$ and x = 27, $\Delta x = 2$
- Now we can use the MVT to bracket our estimate
- If we apply MVT to $f(x) = \sqrt[3]{x}$ on [27, 29]:
 - There is some $c \in (27, 29)$ such that $f'(c) = \frac{\sqrt[3]{29} 3}{2}$
 - Since $f'(c) = \frac{1}{3}c^{-\frac{2}{3}}$
 - Therefore $\sqrt[3]{29} = \frac{2}{3}c^{-\frac{2}{3}} + 3$
 - Since we know 27 < c < 29, we now have bounds on $\sqrt[3]{29}$; when c = 27, $\frac{2}{3}c^{-\frac{2}{3}} + 3 = \frac{2}{3}\cdot\frac{1}{9} + 3 = \frac{2}{27} + 3$ so c cannot exceed that
 - $\text{ When } c = 29 \text{ we can estimate } 29^{-\frac{2}{3}}, \text{ since } 29 < 64 \implies 29^{\frac{2}{3}} < 64^{\frac{2}{3}} = 16 \implies 29^{-\frac{2}{3}} > \frac{1}{16} \text{ so } \sqrt[3]{29} < \frac{2}{3} \cdot \frac{1}{16} + 3$
 - Therefore $3.0416 < \sqrt[3]{29} < 3.074$

Derivatives and Graphing: 4 Quick Tests

- 1. Increasing/decreasing test
 - Given f is differentiable on I, if f' > 0 over I, f is increasing; if f' < 0, f is decreasing; else if f' = 0, f is constant
 - Proof: Using the MVT
 - Consider any $x_1 < x_2 \in I$, since f is differentiable, the MVT holds
 - Therefore there is some $c \in I$ such that $f(x_2) f(x_1) = f'(c)(x_2 x_1)$, but as f' is positive over I, $f(x_2) > f(x_1)$, so by definition f is increasing
 - Proof is similar for the two other cases
- 2. First Derivative Test
 - Since $f(c_{crit})$ includes maxima, minima, and other values, we want to be able to know what values to keep
 - Given I contains a critical point c, f continuous at c, and f differentiable in I but not necessarily at c:
 - 1. If f' > 0 just to the left of c and f' < 0 just to the right of c, then c is a local maximum
 - 2. If f' < 0 just to the left of c and f' > 0 just to the right of c, then c is a local minimum
 - 3. If f' does not change sign, then c is neither a maximum nor a minimum
 - Proof of (1):
 - The statement of (1) means that there is some a such that f' > 0 for $x \in (a, c)$, so by quick test 1 f is increasing on (a, c)
 - Therefore $f(c) \ge f(x)$ for all $x \in (a, c)$
 - By the same logic there is some b such that $f(c) \ge f(b)$ for all $x \in (c, b)$
 - Therefore $f(c) \ge f(x)$ for $x \in (a, b)$, which by definition is a local maximum
 - (2) and (3) could be proven similarly
 - Note that continuity is strictly required
- 3. Concavity Test (for definition refer to next section)
 - Given f(x) is twice differentiable on $I, f'' > 0 \implies f$ is concave up; $f'' < 0 \implies f$ is concave down
 - Proof: Textbook A46
 - Suppose a is the point of interest and f''(a) > 0; we need to show that the function lies above the tangent, i.e. f(x) > f(a) + f'(a)(x-a) for $x \in I$ and $x \neq a$
 - Suppose x > a:

- * Applying the MVT we have f(x) f(a) = f'(c)(x a) where $c \in (a, x)$ * Since f'' > 0 we know f' is increasing on this interval, so $f'(a) < f'(c) \implies f'(a)(x a) < f'(a)(x a)$ $f'(c)(x-a) \implies f(a) + f'(a)(x-a) < f(a) + f'(c)(x-a)$
- * But f(x) = f(a) + f'(c)(x-a) because of the MVT, so f(a) + f'(a)(x-a) < f(x), therefore the function lies above the tangent and it is concave up
- * Other cases can be proved similarly
- 4. Second Derivative Test
 - Given f'' exists and is continuous near c, and f'(c) = 0 then if f''(c) > 0 then f(c) is a local minimum; if f''(c) < 0 then f(c) is a local maximum; if f''(c) = 0 this test is inconclusive

Concavity and Points of Inflection

- Definition: If the graph of y = f(x) lies above all its tangents in I, then f(x) is concave up in I; similarly if it lies below all its tangents then f(x) is concave down
- Definition: f(x) has a point of inflection at c if f(x) is continuous at c and the sign of concavity (up/down) changes at c