Lecture 12, Oct 6, 2021

Applications of Derivatives

- Definition: f(x) has an absolute maximum at c if $f(c) \ge f(x)$ for all $x \in \text{domain } f(x)$ - Note f(x) must exist!
- f(x) has an absolute maximum at c in [a, b] if $f(c) \ge f(x)$ for all $x \in [a, b]$
- f(x) has a local maximum at c if $f(c) \ge f(x)$ for some open interval containing c - This interval may be very small but it has to exist on both sides of c

Extreme Value Theorem

- Given f(x) continuous on [a, b], f(x) has an absolute maximum f(c) and an absolute minimum f(d)for some $c, d \in [a, b]$
 - Knowing whether there exists a maximum/minimum is very important because finding maxima/minima is hard!
 - Proof: Supplement pages 52-56

- Being defined does not imply boundedness; e.g. $\begin{cases} \frac{1}{x} & x \neq 0\\ 1 & x = 0 \end{cases}$ is defined everywhere but unbounded

* Only continuity implies boundedness

- Part 1: Continuity on an interval implies boundedness
 - * Lemma 1: Given f(x) is defined and continuous on [a, b] and a < c < b, there exists some interval $(c - \delta, c + \delta)$ with $\delta > 0$, in [a, b] for which f(x) is bounded
 - This can be easily proven using continuity and epsilon delta; taking $\varepsilon = 1$ implies that on some interval $c - \delta < x < c + \delta$, |f(x) - f(c)| < 1
 - * Lemma 2: Given f(x) is defined and continuous on [a, b], f(x) is bounded on [a, b]
 - Let S be the set of all u for which f(x) is bounded on [a, u]
 - Using Lemma 1, f(x) is bounded on some interval [a, u] with u > a, so S is nonempty; as u < b, S is bounded above by b and so by CORA has a least upper bound c
 - Suppose c < b, then by Lemma 1 there exists $\delta > 0$ such that f(x) is bounded on $(c-\delta, c+\delta)$; therefore, f(x) is bounded on $[a, c+\delta)$, which contradicts the statement that c is the least upper bound of S (since if this were true, the least upper bound of S would be $c + \delta$; therefore c = b
 - Now we know that f(x) is bounded on [a, b] (b is not closed because the least upper bound is not necessarily a member of the set)
 - Since f is continuous at b, it is bounded at b; then by adapting Lemma 1 to an endpoint we know f is bounded on $(b-\delta, b]$; since f(x) is bounded on both [a, b) and $(b-\delta, b]$, f(x)is bounded on [a, b]
- Part 2: Continuity on an interval implies the existence of a maximum and minimum
 - * Consider the set $S = \{f(x) : a \le x \le b\}$; then S is bounded above since f(x) is bounded and therefore by CORA it has a least upper bound M, so $f(x) \leq M$ for all $x \in [a, b]$
 - * Now we need to prove that f(c) = M since a maximum requires that the function takes on that value
 - * Suppose f(x) never equals M, then we can define $g(x) \equiv \frac{1}{M f(x)}$, so g(x) is always positive and defined on [a, b], so q(x) is continuous by the additivity and quotient continuity theorems
 - Therefore, g(x) is also bounded on [a, b] by part 1, so there exists some number K such
 - that $0 < g(x) \le K$, and K > 0• $\frac{1}{K} \le \frac{1}{g(x)} = M f(x) \implies f(x) \le M \frac{1}{K}$, but this violates the fact that M is the

least upper bound of S since $M - \frac{1}{K}$ is smaller

- * Therefore, by contradiction, there is some $c \in [a, b]$ such that f(c) = M
- Note that being bounded is not the same as having an absolute maximum/minimum; e.g. $\frac{\sin x}{x}$ is

bounded but does not have a maximum

 $-\frac{\sin x}{\cos x}$ is bounded by 1, but we cannot say that the maximum is 1, because it is undefined at 0 and so never takes on the value of 1

Fermat's Theorem

- Definition: c is a critical point of f(x) if f'(c) = 0 or DNE
- Fermat's Theorem: Given f(x) has a local maximum or minimum at c, then c is a critical point
 - The reverse is not true! f'(c) = 0 or DNE does not always imply that c is a local minimum or maximum
 - Note: This does not apply for maximum or minimum at end points of a range
 - Proof: textbook page 212
 - * Suppose f(c) is a local maximum; then $f(c) \ge f(x)$ or $f(c) \ge f(c+h)$ for some small h, positive or negative, so $f(c+h) - f(c) \le 0$
 - * Suppose h is positive, then:

uppose *h* is positive, then:
•
$$\frac{f(c+h) - f(c)}{h} \le 0 \implies \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} \le 0 \implies f'(c) \le 0$$

- * Suppose h is negative, then:
 - $\frac{f(c+h) f(c)}{h} \ge 0 \implies \lim_{h \to 0} \frac{f(c+h) f(c)}{h} \ge 0 \implies f'(c) \ge 0$ Note here the direction of the inequality is flipped since we divided by h, a negative
 - quantity
- * Since both $f'(c) \ge 0$ and $f'(c) \le 0$, f'(c) = 0 must be true if it exists; alternatively it may be undefined
- Given a continuous f(x) on [a, b], by the extreme value theorem an absolute maximum/minimum of the range must exist; to test for the absolute maximum/minimum:
 - 1. Find all critical points c and f(c)
 - 2. Find the endpoints f(a), f(b)
 - 3. The largest f value is the absolute maximum, the minimum f value is the absolute minimum