Lecture 1, Sep 13, 2021

Defining the Derivative

- The start of this course involves defining the derivative *rigorously and logically*
- We can't simply define it as the slope of a tangent line or instantaneous speed because neither are well-defined
- Example: Consider a falling object with distance covered $d(t) = 5t^2$, which is an algebraic approximation that comes from experiments; what is the instantaneous speed at t = 1?
 - Consider the secant line between d(t) and d(t+x): $f(x) \equiv \frac{d(1+x) d(1)}{x} = \frac{5(1+x)^2 5(1)}{x} = \frac{1}{x}$ $5 + 10x + 5x^2 - 5$ $10x + 5x^2$ (10 + 5x) (x)

$$\frac{x}{x} = \frac{1}{x} = \frac{1}{x} = \frac{1}{x} = \frac{1}{x} = \frac{1}{x}$$

- If $\frac{x}{x} = 1$ for all x then the instantaneous speed is f(0) = 1; however this is **not true** since division by zero is undefined

Defining The Limit

- The limit is invented by mathematicians to get around division by zero
 Define ^a/_b as a¹/_b; define ¹/_b as the number where b · ¹/_b = 1

 This definition excludes b = 0 because (theorem) 0 times any number is 0
 - We could choose to include b = 0 but in that case $b \cdot \frac{1}{b} = 0$ and so 0 = 1 and all numbers collapse to 0, which is not very useful or fun
- Intuitive definition of $\lim_{x\to a} f(x)$: The number that f(x) gets closer and closer to when x gets closer and closer to a
 - From a rigorous point of view, this is not very useful
- Start by defining a simpler type of limit: e.g. $g(x) = 2 + \frac{1}{x^2}$ and $\lim_{x \to \infty} g(x)$ The limit exists if we can always find some x large enough such that g(x) is arbitrarily close to 2, e.g. within $\pm 10^{-10}$; for all $x > x_0$, g(x) is within 10^{-10} of 2

- We can try some big x_0 , e.g. 10^{100} , then $x > x_0 \implies \frac{1}{x^2} < 10^{-200} \implies g(x) = 3 + \frac{1}{x^2} < 3 + 10^{-10}$ * The other side of the inequality is satisfied by $x^2 \ge 0 \implies \frac{1}{x^2} \ge 0 \implies g(x) > 3 > 3 - 10^{-10}$

- -10^{-10} was arbitrary; we can generalize this: the limit is 2 if for any small $\varepsilon > 0$ there exists an x_0
 - such that for all $x > x_0$, g(x) is within ε of 2 * Take $x_0 = \frac{1}{\sqrt{\varepsilon}} \implies x > \frac{1}{\sqrt{\varepsilon}} \implies x^2 > \frac{1}{\varepsilon} \implies \frac{1}{x^2} < \varepsilon \implies g(x) < 3 + \varepsilon$
- This is the *quess-and-test* method: assume the limit exists, guess a value, and test it against ε