Lecture 7, Oct 4, 2021

Linear Transformations

- Definition: A linear transformation \mathcal{L} is a function that maps a vector in \mathbb{R}^n to a vector in \mathbb{R}^m with the following properties (more formally a linear transformation is $\mathcal{L} : \mathbb{R}^n \to \mathbb{R}^m$, if $\vec{v}, \vec{w} \in \mathbb{R}^n$ then $\mathcal{L}(\vec{v}), \mathcal{L}(\vec{w}) \in \mathbb{R}^m$):
 - 1. $\mathcal{L}(c\vec{v}) = c\mathcal{L}(\vec{v})$
 - 2. $\mathcal{L}(\vec{v} + \vec{w}) = \mathcal{L}(\vec{v}) + \mathcal{L}(\vec{w})$
- Examples:
 - A transformation T_1 that adds a constant vector to every vector is **not** a linear transformation (violates both properties)
 - -y(x) = mx + b is **not** a linear transformation
 - A transformation T_2 that projects every vector $\vec{w} \in \mathbb{R}^3$ onto a given vector $\vec{v} \in \mathbb{R}^3$ is a linear transformation
 - * Proof is too long so it's not copied down
 - A transformation T_3 that takes the length of every vector **not** a linear transformation (fails property 1 because c could be negative, fails property 2 because of the triangle *inequality*)