Lecture 6, Sep 29, 2021

Solving Linear Equations

- Solving systems of linear equations is a central problem of linear algebra
- Row picture: Visualize every row as a line or plane in space, and find the intersection of every row
- Column picture: Express the system as a single vector equation, and find the correct linear combination of vectors that satisfy the equation:

- e.g.
$$\begin{cases} x - 2y = 1\\ 3x + 2y = 11 \end{cases} \implies x \begin{bmatrix} 1\\ 3 \end{bmatrix} + y \begin{bmatrix} -2\\ 2 \end{bmatrix} = \begin{bmatrix} 1\\ 11 \end{bmatrix}$$

• Matrix form:
$$A\vec{x} = \vec{b}$$

- The matrix vector product on the left hand side is defined to be the vector given by $A\vec{x}$ = Γ \downarrow \downarrow \neg Γ_1

$$\begin{bmatrix} | & | & | \\ \vec{a_1} & \vec{a_2} & \cdots \\ | & | & | \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \end{bmatrix} = x_1 \vec{a_1} + x_2 \vec{a_2} + \cdots$$

- This leads to the dot product rule of calculating a matrix-vector product: Each entry in the resulting vector is the dot product of one row of A and \vec{x}

What is a Matrix?

- A rectangular array of numbers: $A = \begin{bmatrix} 4 & 8 & 3 \\ 2 & 1 & 9 \end{bmatrix}$, a 2 × 3 matrix
- Matrix size is rows × columns More general notation: $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$

Matrix Operations

- Matrix addition: Just add all the corresponding entries
 - Requirement: Two matrices have the same size
 - Commutative, associative
- Scalar multiplication: Multiply every entry by the scalar
- Matrix multiplication:
 - The entry at row i, column j is the dot product of row i of A with column j of B
 - $-A\begin{bmatrix} | & | & | \\ \vec{b_1} & \vec{b_2} & \cdots \\ | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | \\ A\vec{b_1} & A\vec{b_2} & \cdots \\ | & | & | \end{bmatrix}$
 - Requirement: The first matrix has the same number of columns as rows of the second matrix: $m \times n$ can multiply $n \times k$ to produce a $m \times k$ matrix
 - Not commutative, but associative
 - The notation for multiplying matrices is just AB, without any symbol in between
- Properties:
 - 1. A + B = B + A addition is commutative
 - 2. c(A+B) = cA + cB scalar multiplication is distributive
 - 3. (A+B) + C = A + (B+C) addition is associative
 - 4. C(A+B) = CA + CB (note C is a matrix) matrix multiplication is distributive
 - 5. A(BC) = (AB)C matrix multiplication is associative
 - 6. All exponent laws apply to matrices (e.g. $A^p A^q = A^{p+q}$)