Lecture 4, Sep 22, 2021

Computing Projections

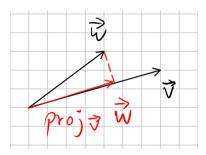


Figure 1: projection

- $\vec{u} = \operatorname{proj}_{\vec{v}} \vec{w}$
- \vec{u} has certain properties: 1. $\vec{u} \parallel \vec{v} \iff \vec{u} = c\vec{v}$ 2. $(\vec{w} - \vec{u}) \perp \vec{v} \iff (\vec{w} - \vec{u}) \cdot \vec{v} = 0$
- Combine the equations to find $c: (\vec{w} c\vec{v}) \cdot \vec{v} = \vec{w} \cdot \vec{v} c \|\vec{v}\|^2 = 0 \implies c = \frac{\vec{w} \cdot \vec{v}}{\|\vec{v}\|^2}$
- Therefore $\vec{u} = \operatorname{proj}_{\vec{v}} \vec{w} = \frac{\vec{w} \cdot \vec{v}}{\|\vec{v}\|^2} \vec{v}$ or $\frac{\vec{w} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v}$ Alternatively $\frac{\vec{w} \cdot \vec{v}}{\|\vec{v}\|^2} \vec{v} = \frac{\vec{w} \cdot \vec{v}}{\|\vec{v}\|} \frac{\vec{v}}{\|\vec{v}\|} = \frac{\vec{w} \cdot \vec{v}}{\|\vec{v}\|} \hat{v}$

Cross Products (aka Vector Products)

- Given $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}, \vec{w} = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}, \vec{u} = \vec{v} \times \vec{w} = \begin{bmatrix} v_2 w_3 v_3 w_2 \\ -v_1 w_3 + v_3 w_1 \\ v_1 w_2 v_2 w_1 \end{bmatrix}$
- The result of the cross product \vec{u} is orthogonal to both \vec{v} and \vec{w} , and has magnitude equal to the area of the parallelogram created by \vec{v} and \vec{w}
- Properties of the cross product:
 - 1. Distributive: $\vec{v} \times (\vec{w} + \vec{z}) = \vec{v} \times \vec{w} + \vec{v} \times \vec{z}$
 - 2. Anti-commutative: $\vec{v} \times \vec{w} = -(\vec{w} \times \vec{v})$
 - 3. Associative with scalars: $c\vec{v} \times \vec{w} = \vec{v} \times c\vec{w} = c(\vec{v} \times \vec{w})$
 - 4. $\vec{v} \times \vec{0} = \vec{0} \times \vec{v} = 0$
 - 5. Not associative with itself: $(\vec{v} \times \vec{w}) \times \vec{z} \neq \vec{v} \times (\vec{w} \times \vec{z})$
- The direction of \vec{u} follows the right-hand rule: index finger in the direction of \vec{v} , middle finger in the direction of \vec{w} , then the thumb will be pointing in the direction of $\vec{u} = \vec{v} \times \vec{w}$
 - Alternatively start at \vec{v} and curl towards \vec{w}
- Lagrange identity says that $\|\vec{v} \times \vec{w}\|^2 = \|\vec{v}\|^2 \|\vec{w}\|^2 (\vec{v} \cdot \vec{w})^2$ Use direct proof approach and use the definition of the cross product to brute force the proof Visualization: Suppose θ is the angle between \vec{w} and \vec{v} ; then $\|\vec{v} \times \vec{w}\|^2 = \|\vec{v}\|^2 \|\vec{w}\|^2$ $(\|\vec{v}\| \|\vec{w}\| \cos \theta)^2 = \|\vec{v}\|^2 \|\vec{w}\|^2 (1 - \cos^2 \theta) = \|\vec{v}\|^2 \|\vec{w}\|^2 \sin^2 \theta$
 - Therefore $\|\vec{v} \times \vec{w}\| = \|\vec{v}\| \|\vec{w}\| \sin \theta$ (absolute value not needed because $\sin \theta \ge 0$ for $0 \le \theta \le \pi$) * Similar to the dot product which is $\vec{v} \cdot \vec{w} = \|\vec{v}\| \|\vec{w}\| \cos \theta$
 - This corresponds to the area of the parallelogram defined by \vec{v} and \vec{w} :
 - * The base length is $\|\vec{w}\|$, and the height is $\|\vec{v}\| \sin \theta$, so the magnitude of the cross product is the area of this parallelogram
- The dot product is a measure of how much the vectors are parallel; the cross product is a measure of

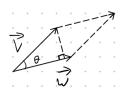


Figure 2: area of paralleogram

how much the vectors are orthogonal