
Lecture 1, Sep 13, 2021
Introduction to Vectors

• Vectors: direction, magnitude, units; scalars: magnitude, sign
• Core of linear algebra involves 2 operations: Adding vectors and scaling vectors

• Course notation: vector from p (tail) to q (head) is expressed as v⃗ = # »

PQ =
[
v1
v2

]
(arrowhead is complete)

– Row vectors are not equal to column vectors:
[
v1
v2

]
̸=

[
v1 v2

]
• Standard position for vectors is tail at the origin

Vector Operations

• Adding vectors:
[
v1
v2

]
+

[
w1
w2

]
=

[
v1 + w1
v2 + w2

]
– Geometrically this puts the tail of one vector at the head of another

• Scaling vectors: c

[
v1
v2

]
=

[
cv1
cv2

]
– This makes the vector longer or shorter/flips it

• When one vector is a scalar multiple of another, they’re parallel v⃗ ∥ w⃗
• The zero vector is v⃗ − v⃗ = 0⃗
• A linear combination of two vectors v⃗ and w⃗ is cv⃗ + dw⃗ for any c and d

Vector Properties
1. v⃗ + w⃗ = w⃗ + v⃗ (commutative)

Lecture 2, Sep 15, 2021
Vector Properties

• Suppose you have 3 vectors v⃗, w⃗, z⃗ in R3, for scalars c, d, e
– The picture of all linear combinations cv⃗ is a line, cv⃗ + dw⃗ is a plane, cv⃗ + dw⃗ + ez⃗ is all of R3

assuming independence
• Vectors are linearly independent when they cannot be expressed as linear combinations of others
• Vector magnitude ∥v⃗∥ =

√
v2

1 + v2
2 + · · ·

– Properties of magnitudes (and all norms in general):
1. ∥cv⃗∥ = |c|∥v⃗∥
2. ∥v⃗∥ ⇐⇒ v⃗ = 0⃗

• A unit vector v̂ is any vector with length 1
– In R3 the well known unit vectors are î, ĵ, k̂ but there are an infinite number of them
– Vectors can be made into unit vectors (normalized) by dividing by their magnitude: v̂ = v⃗

∥v⃗∥

Distance Between Points
• To calculate the distance between two points, we first need to establish a coordinate system, with an

origin and axis directions (basis vectors?)
• Make vectors # »

OP1 and # »

OP2 where O is the origin, and # »

P1P2, which we want the magnitude of
• # »

OP1 + # »

P1P2 = # »

OP2 =⇒ # »

P1P2 = # »

OP2 − # »

OP1 then find
∥∥∥ # »

P1P2

∥∥∥

1

Dot Product

• Definition: The dot product v⃗ · w⃗ =
n∑

i=1
viwi (sum of products of each corresponding pair); note the dot

product of vectors is a scalar, so it is sometimes referred to as the scalar product

Lecture 3, Sep 20, 2021
Properties of the Dot Product

• Dot products are distributive, commutative, and associative (with scalars: c(v⃗ · w⃗) = cv⃗ · w⃗ = v⃗ ·cw⃗)
• The dot product of a vector with itself is the square of its length: v⃗ · v⃗ = v2

1 + v2
2 + v2

3 = ∥v⃗∥2

Geometric Meaning of the Dot Product

Figure 1: img

•

• ∥w⃗ − v⃗∥2 = (w⃗ − v⃗) · (w⃗ − v⃗) = w⃗ · w⃗ − 2w⃗ · v⃗ + v⃗ · v⃗ = ∥w⃗∥2 + ∥v⃗∥2 − 2w⃗ · v⃗

– Apply the cosine law: ∥w⃗ − v⃗∥2 = ∥w⃗∥2 + ∥v⃗∥2 − 2∥w⃗∥∥v⃗∥ cos θ

– Therefore: w⃗ · v⃗ = ∥w⃗∥∥v⃗∥ cos θ =⇒ cos θ = w⃗ · v⃗

∥w⃗∥∥v⃗∥
• Since cosine has range [−1, 1], this means the dot product can be negative; when the dot product is

negative θ <
π

2 so the two vectors are in the same direction

• When v⃗ · w⃗ = 0, then cos θ = 0 =⇒ θ = π

2 so v⃗ and w⃗ are orthogonal

Two Important Inequalities
1. Triangle Inequality: ∥v⃗ + w⃗∥ ≤ ∥v⃗∥ + ∥w⃗∥

•
• ∥v⃗ + w⃗∥2 = (v⃗ + w⃗) · (v⃗ + w⃗) = v⃗ · v⃗ + w⃗ · w⃗ + 2v⃗ · w⃗ = ∥v⃗∥2 + ∥w⃗∥2 + 2∥v⃗∥∥w⃗∥ cos θ

• Replace cos θ with its least upper bound 1: ∥v⃗ + w⃗∥2 ≤ ∥v⃗∥2 + ∥w⃗∥2 + 2∥v⃗∥∥w⃗∥ = (∥v⃗∥ + ∥w⃗∥)2

• Take the square root: ∥v⃗ + w⃗∥ ≤ ∥v⃗∥ + ∥w⃗∥
2. Cauchy-Schwartz-Bunyakovsky Inequality: |v⃗ · w⃗| ≤ ∥v⃗∥∥w⃗∥

2

Figure 2: img

Projections
• Key concept: Orthogonality: Two vectors are orthogonal iff v⃗ · w⃗ = 0
• To get the components/coordinates of a vector we project it onto î, ĵ, k̂, etc (standard projections)
• The projection of w⃗ onto v⃗, projv⃗ w⃗ is a vector parallel to v⃗ that is as close as w⃗ as possible:

–

Lecture 4, Sep 22, 2021
Computing Projections

Figure 3: projection

• u⃗ = projv⃗ w⃗
• u⃗ has certain properties:

1. u⃗ ∥ v⃗ ⇐⇒ u⃗ = cv⃗
2. (w⃗ − u⃗) ⊥ v⃗ ⇐⇒ (w⃗ − u⃗) · v⃗ = 0

• Combine the equations to find c: (w⃗ − cv⃗) · v⃗ = w⃗ · v⃗ − c∥v⃗∥2 = 0 =⇒ c = w⃗ · v⃗

∥v⃗∥2

• Therefore u⃗ = projv⃗ w⃗ = w⃗ · v⃗

∥v⃗∥2 v⃗ or w⃗ · v⃗

v⃗ · v⃗
v⃗

• Alternatively w⃗ · v⃗

∥v⃗∥2 v⃗ = w⃗ · v⃗

∥v⃗∥
v⃗

∥v⃗∥
= w⃗ · v⃗

∥v⃗∥
v̂

3

Cross Products (aka Vector Products)

• Given v⃗ =

v1
v2
v3

 , w⃗ =

w1
w2
w3

, u⃗ = v⃗ × w⃗ =

 v2w3 − v3w2
−v1w3 + v3w1
v1w2 − v2w1

• The result of the cross product u⃗ is orthogonal to both v⃗ and w⃗, and has magnitude equal to the area

of the parallelogram created by v⃗ and w⃗
• Properties of the cross product:

1. Distributive: v⃗ × (w⃗ + z⃗) = v⃗ × w⃗ + v⃗ × z⃗
2. Anti-commutative: v⃗ × w⃗ = −(w⃗ × v⃗)
3. Associative with scalars: cv⃗ × w⃗ = v⃗ × cw⃗ = c(v⃗ × w⃗)
4. v⃗ × 0⃗ = 0⃗ × v⃗ = 0
5. Not associative with itself: (v⃗ × w⃗) × z⃗ ̸= v⃗ × (w⃗ × z⃗)

• The direction of u⃗ follows the right-hand rule: index finger in the direction of v⃗, middle finger in the
direction of w⃗, then the thumb will be pointing in the direction of u⃗ = v⃗ × w⃗

– Alternatively start at v⃗ and curl towards w⃗
• Lagrange identity says that ∥v⃗ × w⃗∥2 = ∥v⃗∥2∥w⃗∥2 − (v⃗ · w⃗)2

– Use direct proof approach and use the definition of the cross product to brute force the proof
– Visualization: Suppose θ is the angle between w⃗ and v⃗; then ∥v⃗ × w⃗∥2 = ∥v⃗∥2∥w⃗∥2 −

(∥v⃗∥∥w⃗∥ cos θ)2 = ∥v⃗∥2∥w⃗∥2(1 − cos2 θ) = ∥v⃗∥2∥w⃗∥2 sin2 θ
– Therefore ∥v⃗ × w⃗∥ = ∥v⃗∥∥w⃗∥ sin θ (absolute value not needed because sin θ ≥ 0 for 0 ≤ θ ≤ π)

* Similar to the dot product which is v⃗ · w⃗ = ∥v⃗∥∥w⃗∥ cos θ
– This corresponds to the area of the parallelogram defined by v⃗ and w⃗:

Figure 4: area of paralleogram

*
* The base length is ∥w⃗∥, and the height is ∥v⃗∥ sin θ, so the magnitude of the cross product is

the area of this parallelogram
• The dot product is a measure of how much the vectors are parallel; the cross product is a measure of

how much the vectors are orthogonal

Lecture 5, Sep 27, 2021
Lines and Planes in 3D

• Lines in R3:

– Line in R3 through the origin:

x
y
z

 = cd⃗ where d⃗ is a direction vector on the line

– General line in R3 not through the origin:

x
y
z

 = p0 + cd⃗ where p0 is a known point on the line

– Both have only one free parameter c, which corresponds with the fact that the line is 1-dimensional

– To convert y = mx + b to vector form:
[
x
y

]
=

[
0
b

]
+ c

[
1
m

]
* Our known point:

[
0
b

]

4

* The direction vector:
[

1
m

]
: as x increases by 1, y increase by m

• Planes in R3:

– Plane in R3 through the origin:

x
y
z

 = cd⃗1 + dd⃗2 where d⃗1 and d⃗2 are two independent vectors

parallel to the plane

– General plane in R3 not through the origin:

x
y
z

 = p0 + cd⃗1 + dd⃗2 where p0 is a known point on

the plane

– Another way to represent planes is with a normal vector n⃗ =

a
b
c

; while there are many vectors

parallel to the plane, there are only two directions that are normal to the plane
* Since n⃗ is orthogonal, any vector # »p0p that goes from a known point on the plane p0 to another

point on the plane p1 is orthogonal to it

* 0 = # »p0p · n⃗ =

x − x0
y − y0
z − z0

 ·

a
b
c

 =⇒ a(x − x0) + b(y − y0) + c(z − z0) = 0 ⇐⇒ ax + by + cz = d

where d = ax0 + by0 + cz0
* This equation is sometimes referred to as the scalar equation of the plane

– To go from vector equation to scalar equation, take the cross product to get a normal vector,
substitute in a, b, and c and solve for d

– To go from a scalar equation to a vector equation, find 3 non-collinear points and get two vectors
and use any point as the known point

Lecture 6, Sep 29, 2021
Solving Linear Equations

• Solving systems of linear equations is a central problem of linear algebra
• Row picture: Visualize every row as a line or plane in space, and find the intersection of every row
• Column picture: Express the system as a single vector equation, and find the correct linear combination

of vectors that satisfy the equation:

– e.g.
{

x − 2y = 1
3x + 2y = 11

=⇒ x

[
1
3

]
+ y

[
−2
2

]
=

[
1
11

]
• Matrix form: Ax⃗ = b⃗

– The matrix vector product on the left hand side is defined to be the vector given by Ax⃗ = | | |
a⃗1 a⃗2 · · ·
| | |

x1

x2
...

 = x1a⃗1 + x2a⃗2 + · · ·

– This leads to the dot product rule of calculating a matrix-vector product: Each entry in the
resulting vector is the dot product of one row of A and x⃗

What is a Matrix?

• A rectangular array of numbers: A =
[
4 8 3
2 1 9

]
, a 2 × 3 matrix

• Matrix size is rows × columns
• More general notation: A =

[
a11 a12 a13
a21 a22 a23

]

5

Matrix Operations
• Matrix addition: Just add all the corresponding entries

– Requirement: Two matrices have the same size
– Commutative, associative

• Scalar multiplication: Multiply every entry by the scalar
• Matrix multiplication:

– The entry at row i, column j is the dot product of row i of A with column j of B

– A

 | | |
b⃗1 b⃗2 · · ·
| | |

 =

 | | |
Ab⃗1 Ab⃗2 · · ·

| | |

– Requirement: The first matrix has the same number of columns as rows of the second matrix:

m × n can multiply n × k to produce a m × k matrix
– Not commutative, but associative
– The notation for multiplying matrices is just AB, without any symbol in between

• Properties:
1. A + B = B + A addition is commutative
2. c(A + B) = cA + cB scalar multiplication is distributive
3. (A + B) + C = A + (B + C) addition is associative
4. C(A + B) = CA + CB (note C is a matrix) matrix multiplication is distributive
5. A(BC) = (AB)C matrix multiplication is associative
6. All exponent laws apply to matrices (e.g. ApAq = Ap+q)

Lecture 7, Oct 4, 2021
Linear Transformations

• Definition: A linear transformation L is a function that maps a vector in Rn to a vector in Rm with
the following properties (more formally a linear transformation is L : Rn → Rm, if v⃗, w⃗ ∈ Rn then
L(v⃗), L(w⃗) ∈ Rm):

1. L(cv⃗) = cL(v⃗)
2. L(v⃗ + w⃗) = L(v⃗) + L(w⃗)

• Examples:
– A transformation T1 that adds a constant vector to every vector is not a linear transformation

(violates both properties)
– y(x) = mx + b is not a linear transformation
– A transformation T2 that projects every vector w⃗ ∈ R3 onto a given vector v⃗ ∈ R3 is a linear

transformation
* Proof is too long so it’s not copied down

– A transformation T3 that takes the length of every vector not a linear transformation (fails
property 1 because c could be negative, fails property 2 because of the triangle inequality)

Lecture 8, Oct 6, 2021
Matrices as Linear Transformations

• Projections can be written as the product of a vector and a projection matrix
• Generally, all linear transformations can be expressed as a matrix; to determine the matrix associated

with a linear transformation, find L(̂i), L(ĵ), L(k̂) (and so on for all bases) and put those as the columns
of the matrix

– Consider v⃗ =

v1
v2
...

 = v1⃗b1 + v2⃗b2 + · · · where b⃗1 =

1
0
...
0

, b⃗2 =

0
1
...
0

, etc

6

– By linearity L(v⃗) = v1L(⃗b1) + v2L(⃗b2) + · · ·

– Now consider the matrix-vector product

 | | |
L(⃗b1) L(⃗b2) · · ·

| | |

 v⃗

– By definition this is equal to v1L(⃗b1) + v2L(⃗b2) + · · · which is equal to L(v⃗)

– Therefore L is represented by the matrix

 | | |
L(⃗b1) L(⃗b2) · · ·

| | |

, so every linear transformation has

an associated matrix
• Conversely all matrix transformations are also linear
• Some famous transformations:

– I – The identity transformation, which takes every vector to itself; the identity matrix has 1s down
the diagonal and 0s everywhere else

– O – The zero transformation, which takes every vector to zero; the zero matrix has all zeroes

Why We Multiply Matrices the Way We Do
• Let T1 and T2 be two linear transformations
• The transformation of T1 followed by T2 is T2(T1(v⃗)); note order is important here
• T2(T1(v⃗)) = M2(M1v⃗) where M2 is the matrix for transformation T2 and M1 is the matrix for

transformation T1
• Therefore the matrix product M2M1 represents the result of applying two linear transformations, one

after the other

• A

 | | |
b⃗1 b⃗2 · · ·
| | |

 =

 | | |
Ab⃗1 Ab⃗2 · · ·

| | |

• Example: Define a transformation Tθ that takes every vector in R2 and rotates it counterclockwise by

θ; the matrix for this transformation is
[
cos θ − sin θ
sin θ cos θ

]

Lecture 9, Oct 13, 2021
Proving Trig Identities Using Matrices

• Rotation matrix: Tθ =
[
cos θ − sin θ
sin θ cos θ

]
• Define the composition Tθ(Tθ(v⃗)) =

[
cos θ − sin θ
sin θ cos θ

] [
cos θ − sin θ
sin θ cos θ

]
=

[
cos2 θ − sin2 θ −2 sin θ cos θ

2 sin θ cos θ cos2 θ − sin2 θ

]
• Since Tθ(Tθ(v⃗)) = T2θ =

[
cos 2θ − sin 2θ
sin 2θ cos 2θ

]
but Tθ(Tθ(v⃗)) =

[
cos2 θ − sin2 θ −2 sin θ cos θ

2 sin θ cos θ cos2 θ − sin2 θ

]
, we can

conclude
{

sin 2θ = 2 sin θ cos θ

cos 2θ = sin2 θ − cos2 θ

Eigenvalues & Eigenvectors
• Certain vectors do not change direction (remain parallel) when transformed by a linear transformation;

they are the eigenvectors of that transformation, and the amount they are scaled by are the eigenvalues
• Av⃗ = λv⃗, where v⃗ is an eigenvector and λ is an eigenvalue
• Example: For a transformation that projects every vector onto a fixed vector, every vector parallel to

the fixed vector is an eigenvector of the transformation with eigenvalue 1; every vector orthogonal to it
is an eigenvector of the transformation with eigenvalue 0

• The number of eigenvalues (note: these can be complex) is always the same as the dimension of the
matrix (note: nonsquare matrices don’t have eigenvalues)

7

• To find eigenvectors, note Av⃗ = λv⃗ =⇒ Av⃗ − λv⃗ = 0 =⇒ Av⃗ − λIv⃗ = 0 =⇒ (A − λI)v⃗ = 0, so the
eigenvectors are the null space of A − λI

– Note that this null space is only nontrivial if det(A − λI) = 0, so we can find eigenvalues by finding
the values of λ that make det(A − λI) = 0

Lecture 10, Oct 18, 2021
Finding Eigenvectors Given Eigenvalues

• Suppose we have λ, how do we solve (A − λI)v⃗ = 0⃗?
• Multiplying it out gets us a system, but some equations are not independent; we are left with equations

relating the components of v⃗
• This allows us to express all the other components all in terms of one component, and allows us to

write the vector v⃗ as the product of a scalar (one of the components) and a vector, which an eigenvector

Inverses
• Suppose u⃗ = T (w⃗), given u⃗ and T , can we find w⃗?

– If T is linear, u⃗ = MT w⃗
– To solve the problem we want to find another matrix N such that NMT = I, so that Nu⃗ =

NMT w⃗ = Iw⃗ = w⃗
– N is the inverse of MT , M−1

T

• For the 2 × 2 case where M =
[
a b
c d

]
, M−1 = 1

ad − bc

[
d −b

−c a

]

Determinants

• ad − bc is the determinant of
[
a b
c d

]
• The determinant determines whether the inverse exists; the inverse only exists when det A ̸= 0
• (M − λI) is not invertible; proof:

– Assume it is invertible, this would mean N exists such that N(M − λI) = I
– Therefore, N(M − λI)v⃗ = N 0⃗ =⇒ Iv⃗ = 0⃗ =⇒ v⃗ = 0⃗
– Therefore if M − λI is invertible then the only v⃗ that satisfies the equation is v⃗ = 0⃗

• Therefore, the condition for finding eigenvalues is to solve for when det(M − λI) = 0

Lecture 11, Oct 20, 2021
Solving Systems of Equations

• Example: Solving ax1 + bx2 + cx3 = d
– Declare x1 to be the leading variable and x2, x3 as the free variables
– Solve for x1 in terms of x2 and x3: x1 = αx2 + βx3 + γ
– Use the additional equations x2 = x2 and x3 = x3 to write the solution in vector form

–

x1
x2
x3

 =

γ
0
0

 + x2

α
1
0

 + x3

β
0
1

– Since x2 and x3 are free variables that can be freely assigned, they are arbitrary scalars, which

means any solution can be found with

γ
0
0

 + c

α
1
0

 + d

β
0
1

 for some arbitrary scalars c and d

– This is basically converting a scalar equation of the plane into a vector equation of the plane
– In general, express the leading variables in terms of the free variables (number of leading variables

equals number of equations), and then you can write the vector solution form

8

• Solving a system of equations corresponds to solving Ax⃗ = b⃗
• In the row picture, the solution represents the intersection of m hyperplanes of n − 1 dimensions in Rn

• In the column picture, the solution represents all linear combinations of the columns of the matrix that
gives b⃗

Lecture 12, Oct 25, 2021
Reduced Normal Form/Reduced Row Echelon Form

• The leading variable (one per equation) only appearing in one row makes the system easy to solve
because the leading variables can be expressed in terms of free variables

• Define the augmented matrix [A|⃗b] as a shorthand for the system Ax⃗ = b⃗
• The form of the augmented matrix that makes it easy to solve is called the reduced normal form (RNF)

– Matrices in RNF has the following properties:
1. The first nonzero entry in each row is 1
2. The other entries in the columns containing the leading 1s (above and below) are 0
3. The leading 1s move to the right as we move down the rows
4. Any and all zero rows are at the bottom

• If the system is in RNF, we can proceed directly to solve it, but if it is not, we can use Gaussian
elimination to bring it to RNF [R|d⃗], an equivalent linear system that has the same solution as the
original system [A|⃗b]

Gaussian Elimination
• By swapping rows, multiplying rows by nonzero scalars, and adding multiples of one row to another, we

change the system of equations but don’t change the solution
• If we do this algorithmically we can bring the matrix to RNF and make it easy to solve
• For the purposes of just solving the system, we usually don’t have to go all the way; stop when the

bottom left corner is all zeroes and do the rest using back substitution
• The allowed operations swapping rows, multiplying by nonzero scalars, and adding multiples of one row

to another are called elementary row operations

Lecture 13, Oct 27, 2021
Gaussian Elimination

• Three outcomes are possible with Gaussian elimination:
1. Unique solution: When every variable in the RNF is a leading variable
2. Infinitely many solutions: When there is at least 1 free variable
3. No solutions: When you get a row of all 0s but the last entry is nonzero

• Cases 1 and 2 are consistent systems (at least 1 solution); 3 is an inconsistent system

Rank – The True Size of a Matrix
• Suppose Ax⃗ = b⃗ and A is m × n, define rank(A) to be the number of leading 1s in the RNF, or

equivalently the number of linearly independent rows or columns (row rank equals column rank)
• The RNF is unique even though the Gaussian elimination steps can be done in any order
• The system only has a unique solution when rank(A) = m = n; when r < m or r < n there are no

solutions or infinite solutions

9

Lecture 14, Nov 1, 2021
Nonsquare Matrices

• When m > n, there are more equations than unknowns; rank A ≤ n; if rank A = n then there are no
solutions or 1 solution

• When m < n, there are more unknowns than equations; rank A ≤ m; if rank A = m, then there are
always infinite solutions

• Full rank square matrices always have only 1 solution (full rank means rank A = min{m, n})
• Any system that is not full rank can have either zero or infinite solutions

More About Inverses
• If we have the inverse of A for Ax⃗ = b⃗, then we can do A−1Ax⃗ = A−1⃗b =⇒ Ix⃗ = A−1⃗b =⇒ x⃗ = A−1⃗b
• Definition: The square matrix A is invertible ⇐⇒ ∃B such that AB = I and BA = I
• Inverses are unique: Suppose both B and C are inverses of A, then BA = I = AC =⇒ BAC =

CAC =⇒ B = C, so all inverses are the same
• Properties of inverses:

1. If A−1 exists, then when [A|⃗b] is taken into rref, it becomes [I|d⃗] where each variable is a leading
variable

2. If Ax⃗ = 0⃗ has nontrivial solutions, then A does not have an inverse; i.e. matrices with a null space
of more than the zero vector are not invertible

– Proof: Assume A−1 exists, then A−1Ax⃗ = A−10⃗ =⇒ Ix⃗ = 0⃗ =⇒ x⃗ = 0⃗; this means that if
A is invertible then x⃗ = 0⃗ is the only solution to Ax⃗ = 0⃗

3. If matrices A and B are both invertible and of the same size, then AB is also invertible, and
(AB)−1 = B−1A−1

– Proof: B−1A−1AB = B−1IB = B−1B = I, and ABB−1A−1 = A−1IA = A−1A = I, so by
the definition of the inverse B−1A−1 is the inverse of AB

4. If A is invertible, then A−1 is also invertible, and (A−1)−1 = A
5. Every invertible matrix A can be expressed as a product of elementary matrices

Lecture 15, Nov 3, 2021
Inverses by Gaussian Elimination

• To find the inverse using Gaussian elimination, we introduce elementary matrices for GE operations:

– Swapping rows:
[
0 1
1 0

] [
a b
c d

]
=

[
c d
a b

]
– Multiplying a row by a scalar:

[
e 0
0 1

] [
a b
c d

]
=

[
ea eb
c d

]
– Add or subtract multiples of other rows:

[
1 e
0 1

] [
a b
c d

]
=

[
a + ec b + ed

c d

]
• Notice that the elementary matrices we obtained for these operations can also be obtained by applying

the same operation to the identity!
– Swapping rows, multiplying rows, or adding or subtracting multiples of rows in the identity gets

us the elementary matrix we need
– Suppose the elementary matrix is E and applies the operation we need; then because EI = E and

we know what E does to a matrix, we can calculate EI to get E
• Elementary matrices are one operation from the identity, so we can return back to the identity by

applying its inverse (elementary matrices are invertible)
• Now apply GE to [A|I], which corresponds to solving AX = I

– As we do this we’ll get EnEn−1 · · · E2E1A
– Since applying GE to an invertible matrix produces I, we have EnEn−1 · · · E2E1A = I, therefore

EnEn−1 · · · E2E1 = A−1

10

– Since we’re also applying the same operations to the right side, the right side becomes
EnEn−1 · · · E2E1I = EnEn−1 · · · E2E1, which is what we want

– Therefore we can apply GE to [A|I], and whatever becomes of I when A is reduced to I is A−1

• Then A = (EnEn−1 · · · E2E1)−1 since (A−1)−1 = A; thus A = E−1
1 E−1

2 · · · E−1
n−1E−1

n

– This leads to a property that any invertible matrix A can be written as a product of elementary
matrices

Lecture 16, Nov 15, 2021
Least Squares Projections

• When Ax⃗ = b⃗ has no solution, the most common cause is because there are too many equations and
not enough variables to satisfy all of them at once (tall and thin matrix)

• In such cases we’re often still interested in trying to find the best solution possible (try to find Ax⃗ ≈ b⃗)
• An important application is in the context of curve fitting – trying to find the right parameters in an

equation so the equation matches the model as closely as possible
– e.g. we collected 3 data points, and now we want to fit y = mx + b to it, but this has no exact

solution since the 3 points may not lie on the same line

The Transpose
• The transpose of a matrix AT is obtained by making all rows columns
• Properties of the transpose:

1. (AT)T = A
2. (cA)T = cAT

3. (AB)T = BT AT

4. If A is invertible, then AT is also invertible and (AT)−1 = (A−1)T

– Proof: AT (A−1)T = (A−1A)T = IT = I, and (A−1)T AT = (AA−1)T = IT = I

Solving the General Least Squares Problem
• Looking at this problem in the column picture, we have Ax⃗ = x1a⃗n + x2a⃗n + · · · + xna⃗n

• Thinking in the column picture, we’re trying to find the xi such that the linear combination of the
columns add up to b⃗

• All the linear combinations of the columns of A form a subspace, but the vector b⃗ could lie outside the
space, which is why there is no solution

• To find the least squares solution, we need to project b⃗ into this subspace defined by the columns of A

Lecture 17, Nov 17, 2021
General Least Squares Continued

• Define a vector space that consists of all the linear combinations of the columns of matrix A
• In a least squares problem b⃗ does not lie in this space
• We want to find x⃗ such that e⃗ = Ax⃗ − b⃗ is minimized
• The smallest such e⃗ would be orthogonal to the column space of A since shortest distance is the

orthogonal distance
– This means that e⃗ ⊥ a⃗i where a⃗i are the vectors in the columns of the matrix

• Since multiplying a matrix by a vector computes the dot product between the rows of the matrix and
the vector, we can compute the dot product between the columns of the matrix and the vector by
transposing the matrix

• Therefore AT e⃗ = 0⃗ since orthogonality means dot product is 0

11

• AT e⃗ = 0⃗
=⇒ AT (Ax⃗ − b) = 0⃗
=⇒ AT Ax⃗ − AT b = 0⃗
=⇒ AT Ax⃗ = AT b

– This is called the normal system of equations
– Define A∗ = AT A and b⃗∗ = AT b⃗ then A∗x⃗ = b⃗∗

– This system does have a solution since AT A is invertible (but only if A has linearly independent
columns)

* Proof: AT Ax⃗ = 0⃗ =⇒ Ax⃗ ∈ N(AT), but Ax⃗ ∈ C(A) and Ax⃗ ∈ N(AT) =⇒ Ax⃗ = 0⃗ since
C(A) ⊥ N(AT); therefore x⃗ ∈ N(A), and if A has linearly independent columns the only such
x⃗ = 0⃗ =⇒ Ax⃗ = 0⃗ =⇒ N(AT A) = {⃗0} =⇒ AT A is invertible
• Note N(A) ⊥ C(AT) because Ax⃗ = 0⃗ requires that the dot product of x⃗ with every row

of A is 0, and thus also the dot product of x⃗ with all the linear combinations of the rows
of A is 0 and so the two subspaces are orthogonal

• So if we transpose the two we get N(AT) ⊥ C(A)
– A∗ is a square n × n matrix where n is the number of unknowns
– Solving directly for the least squares solution gets us x⃗ = (AT A)−1AT b⃗

Lecture 18, Nov 22, 2021
Initial Value Problems

• An IVP is a differential equation attached with initial conditions that allow for a particular solution
• General problem: Given dy

dt
= y′(t) = cy(t) where c is a scalar and y(0) = y0 solve for y(t) for t > 0

• We begin with y(t) = y0ect, so dy

dt
= cy0ect = cy(t) so it satisfies the DE; since y(0) = y0e0 = y0 it also

satisfies the initial conditions
• Generalizing this we have given y′(t) = f(t, y(t)) and y(0) = y0
• In this course we will focus on the numerical approach to solving this equation
• We start with the initial value y(0) = y0, and now we can evaluate f(t, y(t)) to obtain a slope and take

a step forward by some amount ∆t and use the first derivative information to find the y value for this
new point, and repeat until the desired t is reached

Reducing the Error
• To reduce the error we can try to get a better slope estimate
• We can take S = 1

2(SL + SR) where SL = f(tn, yn) and SR = f(tn+1, yn+1), with yn+1 estimated using
the first method, i.e. take slope to be the average of the two points

Lecture 19, Nov 24, 2021
Systems of Linear Differential Equations

• Consider the IVP:
{

x′(t) = ax(t) + by(t)
y′(t) = cx(t) + dy(t)

– This is a coupled system so we can’t simply use the method in the last lecture to the two equations
separately

– We can write this using a matrix: Let Z =
[
x(t)
y(t)

]
, then Z ′ =

[
x′(t)
y′(t)

]
, so the system can now be

represented as Z ′ =
[
a b
c d

]
Z = AZ

12

– To capture the initial conditions, let Z0 =
[
x0
y0

]
– This is referred to as a state-space description of the system and only applies to systems described

by linear differential equations with constant coefficients
* Z is the state of the system

– For these systems there are analytical solutions
• Euler’s method can be applied to such a system in the same way

– Let tn+1 = tn + ∆t
– Zn+1 = Zn + ∆tZ ′

n = Zn + ∆tAZn

• Improved Euler’s method:
– Z∗

n+1 = Zn + ∆tAZn is the Euler update

– Zn+1 = Zn + ∆t

2 (AZn + AZ∗
n+1) is the improved update, where the average of the rate of change

at Zn and Z∗
n+1 is averaged

Higher Order Systems
• Higher order systems of linear differential equations can be converted into systems of first order linear

ODEs, by making the derivatives a part of the state

• Consider a general second-order differential equation d2y

dt2 = y′′(t) = f(t, y(t), y′(t)), and for initial
values y(0) = y0 and y′(0) = y′

0

• Let Z =
[

y(t)
y′(t)

]
=⇒ Z ′ =

[
y′(t)
y′′(t)

]
, and Z0 =

[
y0
y′

0

]
and if the system is linear, we can express this in

the same way using a matrix as a system of first order equations
• Example: y′′(t) = −y(t), y(0) = 1, y′(0) = 0

– Set up Z ′ = AZ, where Z =
[

y(t)
y′(t)

]
=⇒ Z ′ =

[
y′(t)
y′′(t)

]
–

[
y′(t)
y′′(t)

]
=

[
0 1

−1 0

] [
y(t)
y′(t)

]
=⇒ A =

[
0 1

−1 0

]
– Now Euler’s method can be used in exactly the same way

Lecture 20, Nov 29, 2021
Boundary Value Problems

• A boundary value problem involves a system described by a differential equation, but unlike an IVP,
the known values are no longer at 0

• In a BVP the independent variable is typically not time but some kind of spacial variable (hence
boundaries)

• Example: Beam deflection problem; in this case the known points are the supports which have a
deflection of 0

• To solve BVPs numerically, begin by partitioning the interval into n evenly spaced subintervals, and set
the step size as ∆x = b − a

n
• Approximate derivatives using finite differences (secant line slopes)

– The forward difference ∆F f(x) = f(x + ∆x) − f(x)
∆x

– The backward difference ∆Bf(x) = f(x) − f(x − ∆x)
∆x

– The central difference ∆C = f(x + ∆x) − f(x − ∆x)
2∆x

– We can use different combinations of these finite differences to estimate higher order derivatives

13

• f ′′(x) = ∆B [∆F f(x)]

= ∆F f(x) − ∆F f(x − ∆x)
∆x

= 1
∆x

[
f(x + ∆x) − f(x)

∆x
− f(x) − f(x − ∆x)

∆x

]
= f(x + ∆x) − 2f(x) + f(x − ∆x)

(∆x)2

• Example: Given y′′ + 2y′ + y = 0 and y(0) = 0, y(1) = 1, find y that satisfies this for x ∈ [0, 1]
– Approximate y′(x) ≈ ∆Cy(x) and y′′(x) ≈ ∆B∆F y(x)

– Substitute this back into the equation: f(x + ∆x) − 2f(x) + f(x − ∆x)
(∆x)2 +2y(x + ∆x) − y(x − ∆x)

2∆x
+

y(x) = 0

– Simplify:
(

1
(∆x)2 + 2

2∆x

)
y(x + ∆x) +

(
−2

(∆x)2 + 1
)

+
(

1
(∆x)2 − 2

2∆x

)
y(x − ∆x) = 0

– This is now a difference equation, with no more derivatives but instead values of y at discrete
points

– Divide the interval [0, 1] into n = 5 =⇒ ∆x = 0.2 subintervals
– Now we evaluate the difference equation at each of the interior grid points (open interval (0, 1)),

which will get us an algebraic equation:

*

30y(0.4) − 49y(0.2) + 20y(0) = 0
30y(0.6) − 49y(0.4) + 20y(0.2) = 0
30y(0.8) − 49y(0.6) + 20y(0.4) = 0
30y(1) − 49y(0.8) + 20y(0.6) = 0

• Note how the coefficients aren’t changing since they only depend on step size
– Now we can sub in y(1) and y(0) into the equations above
– The system of y values can now be formulated in the form of Ax⃗ = b⃗, which allows it to be solved

Lecture 21, Dec 6, 2021
LU Decomposition

• Let A be an invertible square n × n matrix
• We can write A in a factored form as A = LU , where L is a lower-triangular matrix (zeros above the

diagonal), and U is an upper-triangular matrix (zeros below the diagonal)
• To solve Ax⃗ = b⃗ using LU decomposition:

1. Rewrite Ax⃗ = b⃗ =⇒ LUx⃗ = b⃗, and let y⃗ = Ux⃗, then LUx⃗ = b⃗ =⇒ Ly⃗ = b⃗
2. Solve for y⃗
3. Substitute y⃗ in Ux⃗ = y⃗, and solve for x⃗

• We’ve separated the decomposition phase, which is computationally heavy, and the part where b⃗ is
brought in, which is computationally light

– LU decomposition is better than computing the inverse, because if A is sparse computing the
inverse might lead to a lot of numerical errors

• Because L and U have special forms, solving Ux⃗ = y⃗ is much easier
• LU factorizations aren’t unique, but to solve the problem we can use any one

• Example:

 2 6 2
−3 −8 0
4 9 2

 x1
x2
x3

 =

2
2
3

1. Factor A = LU =⇒

 2 6 2
−3 −8 0
4 9 2

 =

 2 0 0
−3 1 0
4 −3 7

 1 3 1
0 1 3
0 0 1

14

2. Let y⃗ =

y1
y2
y3

 = Ux⃗

3. Ly⃗ = b⃗ =⇒

 2 0 0
−3 1 0
4 −3 7

 y1
y2
y3

 =

2
2
3

 =⇒ y⃗ =

1
5
2

– By forward substitution

2y1 = 2 =⇒ y1 = 1
−3y1 + y2 = 2 =⇒ y2 = 5
4y1 − 3y2 + 7y3 = 3 =⇒ y3 = 2

4. Ux⃗ = y⃗ =⇒

1 3 1
0 1 3
0 0 1

 x⃗ =

1
5
2

 =⇒ x⃗ =

 2
−1
2

– By back substitution

x3 = 2 =⇒ x3 = 2
x2 + 3x3 = 5 =⇒ x2 = −1
x1 + 3x2 + x3 = 1 =⇒ x1 = 2

• To find LU :
– During elimination we have En · · · E1A = U , so L = E−1

1 · · · E−1
n

– As long as we don’t do any back substitution, E−1
1 · · · E−1

n is going to be lower-triangular

Lecture 22, Dec 8, 2021
Computing LU Decompositions

• There is a simpler procedure for doing LU decompositions:
1. Reduce matrix A to upper-triangular U by elimination; keep track of the multipliers used to

introduce the leading 1s and zeroes below
2. Along the main diagonal of L, put the reciprocal of the multiplier that introduced the leading 1 in

U in that position
3. Below the main diagonal of L, put the negative of the multiplier used to introduce the 0 in U in

that position

Review: The 4 Central Problems of Linear Algebra
1. Solving linear systems Ax⃗ = b⃗ where m = n

• Arises from mathematical models of static engineering systems
2. Least squares Ax⃗ = b⃗ where m ̸= n

• Arises when fitting mathematical models to real data with noise
3. Eigenvalues Ax⃗ = λx⃗ for m = n

• Arises when analyzing and designing dynamic systems (systems of differential equations, control
systems)

4. The singular value decomposition Av⃗ = σu⃗ for m ≠ n (analogue of eigenvalues for nonsquare matrices)
• Arises with data and image compression problems

15

	Lecture 1, Sep 13, 2021
	Introduction to Vectors
	Vector Operations
	Vector Properties

	Lecture 2, Sep 15, 2021
	Vector Properties
	Distance Between Points
	Dot Product

	Lecture 3, Sep 20, 2021
	Properties of the Dot Product
	Geometric Meaning of the Dot Product
	Two Important Inequalities
	Projections

	Lecture 4, Sep 22, 2021
	Computing Projections
	Cross Products (aka Vector Products)

	Lecture 5, Sep 27, 2021
	Lines and Planes in 3D

	Lecture 6, Sep 29, 2021
	Solving Linear Equations
	What is a Matrix?
	Matrix Operations

	Lecture 7, Oct 4, 2021
	Linear Transformations

	Lecture 8, Oct 6, 2021
	Matrices as Linear Transformations
	Why We Multiply Matrices the Way We Do

	Lecture 9, Oct 13, 2021
	Proving Trig Identities Using Matrices
	Eigenvalues & Eigenvectors

	Lecture 10, Oct 18, 2021
	Finding Eigenvectors Given Eigenvalues
	Inverses
	Determinants

	Lecture 11, Oct 20, 2021
	Solving Systems of Equations

	Lecture 12, Oct 25, 2021
	Reduced Normal Form/Reduced Row Echelon Form
	Gaussian Elimination

	Lecture 13, Oct 27, 2021
	Gaussian Elimination
	Rank – The True Size of a Matrix

	Lecture 14, Nov 1, 2021
	Nonsquare Matrices
	More About Inverses

	Lecture 15, Nov 3, 2021
	Inverses by Gaussian Elimination

	Lecture 16, Nov 15, 2021
	Least Squares Projections
	The Transpose
	Solving the General Least Squares Problem

	Lecture 17, Nov 17, 2021
	General Least Squares Continued

	Lecture 18, Nov 22, 2021
	Initial Value Problems
	Reducing the Error

	Lecture 19, Nov 24, 2021
	Systems of Linear Differential Equations
	Higher Order Systems

	Lecture 20, Nov 29, 2021
	Boundary Value Problems

	Lecture 21, Dec 6, 2021
	LU Decomposition

	Lecture 22, Dec 8, 2021
	Computing LU Decompositions
	Review: The 4 Central Problems of Linear Algebra

