Lecture 9, Sep 28, 2021

Relationship Between Moment and Angular Acceleration

- If we apply a pure moment M, what is the angular acceleration of the mass?
 - If the lever arm is y then M = Fy
 - The angular acceleration is related to the translational acceleration: $a=\alpha y$
 - If we combine them with F = ma: $M = Fy = (m\alpha y)y = m\alpha y^2 = (my^2)\alpha$
 - The my^2 term is the angular equivalent of mass, the moment of inertia I_m
- $M = I_m a$ is the rotational analogue of Newtons second law, and I_m has units of mass times length squared

Calculating the Moment of Inertia

• To determine I_m for non-point masses, we can break the object into smaller pieces:

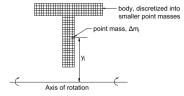


Figure 1: breaking the object into smaller pieces

 $-I_m = \sum I_{m,i} = \sum \Delta m_i y_i^2$

- We can get the exact moment of inertia by taking an integral: $I_m = \int_M y^2 dm$ where M is the entire mass
- For a 2-dimensional object with uniform density ρ this reduces to $\rho \int_A y^2 dA$
- The integral term $\int_A y^2 dA$ is known as the *second moment of area I*, with dimensions of length to the power of 4

Properties and Physical Interpretation of the Moment of Inertia

• From the formula we can see that I depends on the axis of rotation, and masses further from the axis of rotation contribute more to the moment of inertia

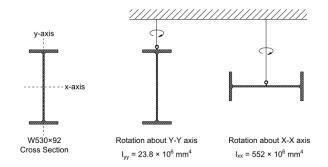


Figure 2: moment of inertia for I-beam

• Example: $W530 \times 92$ I-beam (530mm nominal height, 92kg/m weight); the moment of inertia about the y axis is much lower because the masses are closer to the axis

Example Calculation

- Example: Calculate the second moment of area for a rectangle rotating about its middle axis
- dA = b dy where b is the width of the rectangle

•
$$I = \int_{-\frac{h}{2}}^{\frac{h}{2}} by^2 \, \mathrm{d}y = \left[\frac{1}{3}by^3\right]_{-\frac{h}{2}}^{\frac{h}{2}} = \frac{bh^3}{12}$$