Lecture 7, Sep 27, 2021

Safety

- Types of forces
 - 1. Dead loads Things that can't move e.g. self-weight, added features (e.g. asphalt on a suspension bridge, chairs in this lecture hall, often called *superimposed* dead loads)
 - Generally well-known during design, low-uncertainty
 - 2. Live loads Things that can move e.g. cars, people, wind
 - Generally more uncertain and unpredictable
 - To design for these, we look for worst cases
- Once we know the types of load, we make a best guess
 - For some things we take the average, e.g. cars

Figure 1: probablity distribution of stress

- The basic safety equation: $\sigma_{demand} < \sigma_{capacity}$, i.e. your structure should be able to handle more stress than demanded
 - This just tells you whether the structure will fall down, not whether it is safe
 - $\sigma_{capacity}$: Yield or ultimate strength?
 - * Generally if we have a yield strength σ_y , we should use that, because the ultimate strength of e.g. steel is hard to measure and uncertain
 - Stress demand and capacity usually follow a normal distribution (bell curve); there might be structural imperfections leading to uncertainties in dead loads, and material imperfections might lead to uncertainties in stress capacity
 - * This means that even if the average σ_{demand} is greater than the average $\sigma_{capacity}$, they might still overlap
 - * The overlap is where the uncertainties make the stress demand greater than the capacity and so the structure fails
 - * We want to minimize this overlap but it is not possible to make this zero (size of overlap is related to risk of failure)
- A safe structure has $\sigma_{demand} < \sigma_{capacity}$ and a low risk of it being otherwise
- 2 ways to deal with risk:
 - 1. Limit states design (very complicated and an entire course on its own)
 - 2. Allowable stress design (this course), aka working stress design
 - Key concept: Factor of Safety FoS = $\frac{\sigma_{capacity}}{\sigma_{capacity}}$
 - * If this number is less than 1, it will fall down
 - * If this number is greater than "some specified number", then it is safe

- This "some specified number" can be determined using limit states design
- In the 1800s this would be 3-10 based on consequences for failure and warning (e.g. for ductile metals like steel the FoS can be lower since there is a lot of warning before it fails)
- In the 1960s FoS of 2 is typical
- Today, with more control on the materials, the FoS is typically about 1.7
- e.g. The Brooklyn bridge built in the 1980s has an FoS of 5, the Golden Gate bridge has 2.68, the Akashi Kaikyo bridge has 2.25; numbers go down over time because materials are more well understood and uncertainties decrease
- Allowable stress: $\frac{\sigma_y}{\text{FoS}}$ and this is the amount of stress that the structure is allowed to take
 - In this class the FoS will be given