
Lecture 23, Nov 2, 2021
Curvature Diagrams

• Like shear and moment diagrams, we can draw curvature diagrams
• Recall ϕ = M

EI
, so we can use this and the bending moment diagram to draw a curvature diagram

(note EI is usually a constant, so the BMD and curvature diagrams are usually the same shape, just
scaled by a constant; EI is not constant if the shape has a changing cross section or is not made of a
uniform material)

– The units of ϕ is rad/mm
– Curvature can have jumps due to changing EI, but the moment diagram is always continuous

• Note that the y in σ = My

I
is not the same as the y in ϕ = d2y

dx2 (for small angles only); the first is
internally in the member itself, the second is the deflection of the beam (y(x) is the displaced shape of
the beam)

– If angles are not small, then ϕ =
d2y
dx2(

1 +
(

dy
dx

)2
) 3

2

– Angles are usually very small so dy

dx
is small and even more so when squared; the difference it

causes is usually less than the uncertainties of the material constants so it’s irrelevant
• Even though we know the curvature, we still don’t know the displaced shape y(x); to do this we need

to double integrate, but this is a lot of work
– Integrating ϕ gets θ, and integrating θ gets us y(x)
– Example: Consider a beam with a wkN/m distributed load on top; the max bending moment is

wL2

8 can can be modelled by M(x) = x(L − x)w
2

* The curvature is x(L − x)w
2EI

= wxL

2EI
− wx2

2EI

* θ =
�

ϕ dx = wx2L

4EI
− wx3

6EI
+ C1

* y =
�

θ dx = wx3L

12EI
− wx4

24EI
+ C1x + C2

* Using our initial conditions, C2 = 0 and C1 = − wL3

24EI

* To test this we can evaluate at x = L

2 , since the structure is symmetric the slope should be 0
at this point

* y(x) = wx3L

12EI
− wx4

24EI
− wL3x

24EI
* Note the signs might be weird

– Even though it might be easy in this case, it is usually very hard; in this case we had a single
continuous equation for the bending moment, but if we had point loads or other more complex
loading types there will be lots of pieces in the moment equation

– The moment equation is usually hard to obtain
• To get the shape more easily, we can use the two Moment Area Theorems

First Moment Area Theorem (θ)

• Since curvature ϕ = dθ

dx
the change in slope over the change in length, so by the fundamental theorem

of calculus, the change in slope between two points ∆θAB is the integral of the curvature
– Note θ(x) is the slope of the beam at x

• ∆θAB =
� B

A

ϕ(x) dx is the first Moment Area Theorem, which states that the change in slope
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between any two sections of a deflected beam is equal to the area under the curvature
diagram between those two sections

• Note that since this method only gives us the change, we need a point where the slope is known
• Signs are not automatic and must be determined using intuition

Second Moment Area Theorem (∆)

• ∆ =
�

θ dx so we can do an integration-like process
• θ is the area under the curve between two regions plus a constant C1

• ∆ =
�

(A + C1) dx

• If we pretend that A is not a function of x, then we get Ax + C1x + C2
• But since A is a function of x, we have to multiply by x̄ instead of x for Ax̄ + C1x + C2, where x̄ is the

distance to the centroid of the area under the curvature diagram
• C1x + C2 is a line, which tells us that our answer is going to have a linear offset
• Geometrically this line is the tangent to the displaced shape at A
• Note δBA has the displacement at B, the tangent at A, and the area under the curvature diagram

between A and B

• If the area under the curve is complicated we can break it up into pieces and have δBA =
n∑

i=1
Aidi,

where Ai is the area of each piece and di is the horizontal distance between B and the centroid of the
piece i

• For any two points A and B along the deflected beam, the tangential deivation of point B,
δBA, is equal to the product of the area under ϕ(x) betweeen A and B, and the distance
from the centroid of the diagram between A and B, to B (i.e. the first moment of area
about point D)

Figure 1: Summary of Moment Area Theorem 2; δ is the tangential deviation

Areas and Centroids of Common Shapes
• When using these two theorems, the areas and centroids of many different shapes are needed; these are

available in the appendix
• If the cross sections are more complex but can be broken down into a number of common shapes, then

we can still apply the two Moment Area Theorems and sum up the contributions from each piece
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Figure 2: Diagram of the derivation of the Second Moment Area Theorem

•


∆θAB =

∑
i = 1n

[�
ϕ(x) dx

]
i

δDT =
n∑

i=1

[
x̄

�
ϕ(x) dx

]
i
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