Lecture 14, Oct 13, 2021

Euler Buckling

Figure 1: Two methods of failure for members under compressive strain

- Methods under compression can fail in 2 ways:
 - 1. Crushing: Typically occurs for short, stocky members; the member shortens; the force that causes crushing is the squash load
 - The squash load is simply $P_c = \sigma_c A$
 - 2. Buckling: Typically occurs for long, thin members; the member curves and folds

- The load that causes this is the Euler load $P_e = \frac{\pi^2 EI}{L^2}$

- The original length is the longest, the buckled length is less long and the shortest length is the crushed length; since the buckled length is greater than the crushed length, it has less strain energy and so it is the lower energy state so nature prefers it
- The method in which a compressive member fails depends on the force required to cause crushing or buckling; whichever requires less force will be the method of failure

Derivation of Euler Load

- Fundamental assumptions:
 - 1. The material is homogeneous and linear elastic (constant Young's modulus E and second moment of area I)
 - 2. The ends are free to rotate and the top is free to move vertically (i.e. a roller at the top, a pin at the bottom)
 - 3. The member starts straight and the ends cannot move horizontally
- At the cut, the compressive force P and the vertical support are equal and in opposite directions and separated by a distance, so they form a couple; to resist it the beam carries an internal clockwise moment M
 - Since P and the vertical support force form a couple, $Py = M = EI\phi$
 - Recall that the curvature is the derivative of the slope, which is the second derivative of displacement; $d^2 u$
 - since the second derivative is negative in this case, we have $\phi = -\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$
 - The curvature is the negative of the second derivative; note when we have a positive slope (curvature) the beam is concave down so the second derivative is negative
 - * Explained more in lecture 20

Figure 2: Derivation of the Euler load

• Combine the equations to get $\frac{P}{EI}y = -\frac{d^2y}{dx^2}$, which is a differential equation with solution in the form of $y = A\sin(\omega x + B)$; substituting this solution yields $\omega = \sqrt{\frac{P}{EI}}$ - Since the ends are fixed, y(0) = 0 and y(L) = 0* Substituting $y(0) = 0 \implies A\sin(B) = 0 \implies B = 0$

* And then $y(L) = 0 \implies A\sin(\omega L) = 0 \implies \omega L = n\pi \implies \omega = \frac{n\pi}{r}$ for $n \in \mathbb{Z}$

- Substitute
$$\frac{n\pi}{L} = \omega = \sqrt{\frac{P}{EL}} \implies \frac{n^2\pi^2}{L^2} = \frac{P}{EL} \implies P = \frac{n^2\pi^2 EI}{L^2}$$

- Substitute $\underline{L} = \omega = \sqrt{\overline{EI}} \implies \underline{L^2} = \overline{EI} \implies I - \underline{L^2}$ - To obtain the smallest nonzero value for P we take n = 1 to get $P_e = \frac{\pi^2 EI}{L^2}$

Higher Modes of Buckling

Figure 3: Higher modes of buckling

• The *n* term in
$$P = \frac{n^2 \pi^2 EI}{L^2}$$
 and $\omega = \frac{n\pi}{L} \implies y(x) = A \sin\left(\frac{n\pi}{L}x\right)$ lets us "choose" the number of

half-oscillations y goes through down the entire beam

- The higher modes of buckling do occur but are much more rare because the P force is much greater
- Oscillations in y correspond to more complex types of buckling, where instead of curving into 1 arc, the • beam curves into a sine wave; this corresponds to higher modes of buckling

Buckling of Imperfect Members

Figure 4: Ideal vs. realistic buckling curves

- Unlike tension, buckling is an unstable equilibrium; once a member starts to buckle it will continue to weaken and curve more until it fails
- Under ideal conditions members will stay straight until the Euler load is reached, at which point they suddenly buckle and the force stays constant
- In real life, as the angle of buckling gets larger, the force required gets smaller
- However, real members are imperfect and have some initial lateral deflection at their midpoint Δ_0
- Richard Southwell derived the equation $\Delta_{lat} = \frac{\Delta_0}{1 \frac{P}{P_{crit}}}$ that relates lateral deflection Δ_{lat} to load P- The P_{crit} is the critical buckling load, and for members satisfying the Euler conditions (homogeneous,
 - elastic, roller at one end and pin at the other) this is equal to the Euler load P_e