
Lecture 14, Oct 13, 2021
Euler Buckling

Figure 1: Two methods of failure for members under compressive strain

• Methods under compression can fail in 2 ways:
1. Crushing: Typically occurs for short, stocky members; the member shortens; the force that causes

crushing is the squash load
– The squash load is simply Pc = σcA

2. Buckling: Typically occurs for long, thin members; the member curves and folds

– The load that causes this is the Euler load Pe = π2EI

L2
• The original length is the longest, the buckled length is less long and the shortest length is the crushed

length; since the buckled length is greater than the crushed length, it has less strain energy and so it is
the lower energy state so nature prefers it

• The method in which a compressive member fails depends on the force required to cause crushing or
buckling; whichever requires less force will be the method of failure

Derivation of Euler Load
• Fundamental assumptions:

1. The material is homogeneous and linear elastic (constant Young’s modulus E and second moment
of area I)

2. The ends are free to rotate and the top is free to move vertically (i.e. a roller at the top, a pin at
the bottom)

3. The member starts straight and the ends cannot move horizontally
• At the cut, the compressive force P and the vertical support are equal and in opposite directions and

separated by a distance, so they form a couple; to resist it the beam carries an internal clockwise
moment M

– Since P and the vertical support force form a couple, Py = M = EIϕ
– Recall that the curvature is the derivative of the slope, which is the second derivative of displacement;

since the second derivative is negative in this case, we have ϕ = − d2y

dx2
– The curvature is the negative of the second derivative; note when we have a positive slope

(curvature) the beam is concave down so the second derivative is negative
* Explained more in lecture 20
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Figure 2: Derivation of the Euler load

• Combine the equations to get P

EI
y = − d2y

dx2 , which is a differential equation with solution in the form

of y = A sin(ωx + B); substituting this solution yields ω =
√

P

EI
– Since the ends are fixed, y(0) = 0 and y(L) = 0

* Substituting y(0) = 0 =⇒ A sin(B) = 0 =⇒ B = 0
* And then y(L) = 0 =⇒ A sin(ωL) = 0 =⇒ ωL = nπ =⇒ ω = nπ

L
for n ∈ Z

– Substitute nπ

L
= ω =

√
P

EI
=⇒ n2π2

L2 = P

EI
=⇒ P = n2π2EI

L2

– To obtain the smallest nonzero value for P we take n = 1 to get Pe = π2EI

L2

Higher Modes of Buckling

Figure 3: Higher modes of buckling

• The n term in P = n2π2EI

L2 and ω = nπ

L
=⇒ y(x) = A sin

(nπ

L
x

)
lets us “choose” the number of
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half-oscillations y goes through down the entire beam
• The higher modes of buckling do occur but are much more rare because the P force is much greater
• Oscillations in y correspond to more complex types of buckling, where instead of curving into 1 arc, the

beam curves into a sine wave; this corresponds to higher modes of buckling

Buckling of Imperfect Members

Figure 4: Ideal vs. realistic buckling curves

• Unlike tension, buckling is an unstable equilibrium; once a member starts to buckle it will continue to
weaken and curve more until it fails

• Under ideal conditions members will stay straight until the Euler load is reached, at which point they
suddenly buckle and the force stays constant

• In real life, as the angle of buckling gets larger, the force required gets smaller
• However, real members are imperfect and have some initial lateral deflection at their midpoint ∆0

• Richard Southwell derived the equation ∆lat = ∆0

1 − P
Pcrit

that relates lateral deflection ∆lat to load P

– The Pcrit is the critical buckling load, and for members satisfying the Euler conditions (homogeneous,
elastic, roller at one end and pin at the other) this is equal to the Euler load Pe
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