
Lecture 1, Sep 13, 2021
Structural Engineering

• Designing structures with economy and elegance to safely resist forces it may be subject to
• Art and science components
• Engineering comes from Latin inginure – to create and English ingenium – clever

The 3 Principles of Engineering
1. F = ma – we use math equations to model systems
2. You can’t push a rope – we can’t always rely on just equations; we need common sense too
3. To find the answer, you must know the answer – experience is very important; if you’re doing something

for the first time, be extremely careful

Significant Digits
• Use 3 significant digits iff first nonzero digit ̸= 1
• Use 4 significant digits if first nonzero digit is 1
• Using these numbers give us about 0.5% accuracy; because the Earth is not a sphere, g varies between

different locations by about this amount, so there’s no point to be more precise (for this course use 9.81)
• Use engineering notation (exponents for scientific notation should be multiples of 3) – easier to think

about so we know whether numbers are realistic

Lecture 2, Sep 14, 2021
De omnibus dubitandum: Question everything; keep an open mind

Forces
• A push or a pull that can cause an object to move or deform; by its nature a vector quantity
• Forces are measured in newtons; 1N is about the weight of a small apple; 1kN is about the weight of a

football player
– In imperial units pounds are used

• When objects are not accelerating,
∑

F⃗ = 0 (translational equilibrium)
• Forces can be broken down into axis-aligned components

Moments
• Knowing translational forces sometimes isn’t enough
• All torques are moments, but not all moments are torques

– In structural engineering torques are moments where the rotational axis is the long axis of the
object

• Rotations need a reference point i, the point about which the rotation happens
• d⃗ is the lever arm, the distance over which the force is acting
• The moment is M⃗ = F⃗ × d⃗; this has units of Nm; although this is the same unit as energy they’re

different, since moment is the cross product and energy is the dot product
• Moments try to rotate an object while translational forces try to move it; the moment is a measure of

how much the object wants to rotate
• The same force can cause rotations in different directions depending on the reference point
• Special case: When a pair of forces are going in equal and opposite directions and separated by some

distance d, this is called a couple
– Since the forces cancel each other out, there is no translational motion, only rotation
– Also called a pure moment
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Unit Conversions
• When converting units, we multiply the quantity by unit conversion fractions equal to 1

Lecture 3, Sep 15, 2021
Types of Bridges

Figure 1: Bridge types

• Suspension bridges consist of cables held up by towers, with the weight of the bridge being connected
to the main cable using vertical cables

• The weight of the main bridge is transferred to the cable, which is then transferred to the towers and
then the ground

Internal Forces

Figure 2: Internal forces

• Tension forces pull on both sides of an element, and tries to make it longer
– If each end is being pulled with a 100N force, the tension is still 100N, not 200
– The element “transmits” the force from one end to the other end

• Compression forces push in on the element, trying to make it shorter
• Key idea: If the entire structure is in equilibrium, all its constituent parts are also in

equilibrium.
– Example: If a beam is being pulled on each end with 100N and thus in equilibrium, we can break

it apart at an arbitrary point, and expose an internal force; the internal forces will also be 100N
and balance out the forces at the ends; this is the reason why tension is 100 and not 200
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Figure 3: Cable shape

Cable Structure
• When a cable is attached at the ends and only supporting its own weight, it takes the shape of a

catenary (modelled by y = cosh(e x
a + e− x

a ) + b, a = span, b = vertical offset, not a parabola)
– This is a different shape from uniform loading because the load per unit length of cable is constant,

not load per unit length of the span; so at the ends, there is more load per x distance
• If we add loads much heavier than the weight of the cable itself onto the cable, then the effect of the

cable’s weight will be negligible and the cable becomes piecewise linear
• Typically in a suspension bridge the horizontal spacing between loads is constant (not the cable length

between loads)
• When the weights are uniformly loaded, the cable takes the shape of a parabola

Forces
• Consider a suspension bridge uniformly loaded with 7 masses each with weight P

Figure 4: Force calculations

• At the endpoints, the vertical component of force is equal to half of the total weight of the bridge due
to symmetry

• In each segment, the horizontal component of tension remains the same and is equal to the tension at
the ends

• In the 2 end segments, the vertical component of force is equal to the endpoints; then as you move in
to the middle of the bridge, each segment has vertical tension reduced by P , with the middle segments
having tension 1

2P

Lecture 4, Sep 20, 2021
Free Body Diagrams

• Requirements:
1. An FBD must be free, i.e. it must be floating in space and not connected to any external things,

e.g. the ground (we cut them out of the diagram)
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2. All external forces must be included
3. All forces at cut locations (internal forces) must also be included
4. Include body forces, maybe (self-weight)
5. Do the calculations based on undeformed geometry

– This is why an FBD tells you you can push on a rope, so watch out
• All FBDs will be in equilibrium

Distributed Loads
• Forces can be “smeared out”: point loads can be replaced by a big uniformly distributed load (UDL),

symbol w with units kN/m (force per unit distance/area)
• With free body diagrams we can replace an UDL with an equivalent resultant wL at the midpoint of

the UDL

Figure 5: uniformly ditributed load

–

– Note not all distributed loads are uniform; in this case we put the force at the centroid
� b

a
w(x)x dx� b

a
w(x) dx

with the equivalent force equal to
� b

a

w(x) dx

Designing Structures
0. Select the type of structure
1. Estimate the geometry and the loads (based on the 3rd principle of engineering!)
2. Perform the analysis, which tells you how the internal forces are distributed

• This is the big one for this course
3. Select standard shapes or create new ones to safely carry the loads

• Now you know how much the structure weighs
4. Iterate: With the new knowledge of the structure’s forces and weights, re-estimate the geometry, loads,

shapes, etc

Designing Suspension Bridges

Figure 6: suspension bridge

•

• Find the load path: how does the load go to the ground?
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– The load path goes from the car, to the deck, to the hangers, to the main cables, to the towers
and then the ground

Designing the Main Cables (Force Analysis)

Figure 7: forces in the suspension bridge

• The FBD is drawn from the tower to the midspan
• Since at the midspan the cable is horizontal, the tension force at point B only has a horizontal component

H
•
∑

Fx = 0 =⇒ H − Tsupp,x = 0 =⇒ H = Tsupp,x

•
∑

Fy = 0 =⇒ Tsupp,y − w
L

2 = 0 =⇒ Tsupp,y = wL

2
• For sum of moments, take moments around point A and counterclockwise to be positive

•
∑

M = 0 =⇒ �����Tsupp,x · 0 +�����Tsupp,y · 0 + Hh − wL

2 · L

4 = 0 =⇒ H = wL2

8h

– Note: The uniform load is equivalent to a load of wL at the midpoint, which is L

4 since midspan

is L

2 long
– H can be shifted so it acts directly under A and w can be shifted so it acts directly to the right of

A; this does not change the moment due to the nature of moments (cross products: the area of
the parallelogram does not change when its sides are shifted)

Example: Golden Gate Bridge

• L = 1280m, h = 143m, w = 370kN/m
• L

h
= 8.95 (between 8 and 10)

• Tsupp,y = 237MN
• H = 530MN
• Tmax =

√
2372 + 5302 = 580N or 290MN per cable

Lecture 5, Sep 21, 2021
How do we know how big forces really are compared to the element? Is a load of 100MN in a bridge cable a
lot of force? We can use stress and strain, which are normalized concepts of forces, so we can compare them
for elements of different sizes.

Hooke’s Law
• The restoring force in a spring is proportional to its change in length: F = k∆t
• Hooke’s law also applies to structures subjected to direct tension or compression such as cables and

columns

5



• Structures that obey Hooke’s law are linear elastic
• k is sometimes refired to as the axial stiffness

Stress and Strain
• Stress is an area-normalized measurement of internal force; for a cable carrying a force F with undeformed

cross-sectional area A, the stress is σ = F

A

– Stress has units of force per unit area and is usually in MPa (1Pa = 1N/m2; 1MPa = 1MN
m2 = 1N

mm2 )
– Stress is similar to pressure, but pressure acts externally while stress acts internally

• Strain is a length-normalized measurement of deformation; if a cable was originally L0 units long but
has now been stretched by an additional ∆l, the strain is ε = ∆l

L0
– Strain is dimensionless but typically presented in units of mm/mm, mm/m or even percentage
– 0.001 is about a reasonable strain under “working load conditions” (e.g. a building with a roof

under normal conditions)
• Engineering strain/stress use the undeformed area and length; the true strain/stress use the deformed

area/length; true strain is d
dx

of the displacement field
– Engineering stress/strain is used instead of the true strain/stress because the latter is too hard to

measure
• Using stress and strain allow us to compare structures of different sizes

– e.g. a thicker cable will break at a higher load than a thinner cable, but if they’re the same material,
the stress that breaks them will be the same

• Stress and strain also apply for compression, as long as the compression is not too much and buckling
doesn’t happen

Young’s Modulus and Relation to Hooke’s Law
• Stress is proportional to strain by a constant E, the Young’s Modulus: σ = Eε

– Young’s modulus is a property of the material and has the same dimensions as stress, typically
MPa

– The strains here are only as a result of carrying a load causing a stress; e.g. thermal or shrinkage
strains should not be used here

– Also known as the material stiffness
• k can be expressed in terms of a member’s cross sectional area A, length L0, and material stiffness E:

F = AE
∆l

L0
= AE

L0
∆l =⇒ k = AE

L0
– This shows that the axial stiffness is proportional to the cross-sectional area and material stiffness,

and inversely proportional to length
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Lecture 6, Sep 21, 2021
Stress-Strain Curves

(Note: Mild steel is also sometimes known as low-carbon or low-alloy steel; the lower carbon content makes it
more ductile and easier to work with, but less strong)

• Materials may exhibit linear elasticity for lower loads, but as they approach failure the stress-strain
relationship is nonlinear

• Some key material properties are used to describe the stress-strain curve:
1. Strength: How much stress a material can carry before it fails

1. Yield strength/stress σy or fy: The stress at which the material starts yielding (permanently
deforming); when yielding occurs, strain will increase even without increasing stress; this is
the yield plateau (flat part of graph)

– The yield strain is typically about 0.002, and the yield plateau ends at about 0.05
2. Ultimate strength/stress σu or fu: The stress at which the material fails completely (the peak

on the stress-strain curve)
2. Ductility: How much a material can be deformed before it breaks; the largest strain a material

can carry before it fractures (ductile vs brittle)
3. Young’s Modulus (material stiffness): Slope of the linear elastic region of the curve (see previous

lecture)
– Materials with higher value of E are stiff, lower values of E are flexible

• Plastic deformations are not recoverable; elastic deformations are
• Phases of the curve:

1. The linear elastic region where σ = Eε (small strains only)
2. Yield plateau: Plastic behaviour; strain can change without stress changing (once the yield strength

is reached)
3. The rest of the graph, where the curve is nonlinear; some strengthening due to strain hardening

and then softening as necking begins
• If the stress is unloaded when you’re on the yield plateau, the stress-strain curve of unloading is linear
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with the same slope as the original linear elastic region, but it won’t pass through the origin
– Essentially when unloaded the linear elastic region is shifted to the right by the same amount you

moved along the yield plateau
• Strain hardening: When a material gets stronger and stiffer when strained beyond its yield point
• Necking: Local tensile strains cause the cross-sectional area to become much smaller; usually precedes

failure
– During this phase, the engineering stress goes down, but the true stress keeps going up because

the cross-sectional area decreases
• Steel is very handy because it has a large yield plateau, so there is a lot of warning before it fails
• At the atomic level:

– During the linear elastic region the atoms get pulled apart and they can spring back together
– During the yield plateau, the atoms slip past each other
– Past the yield plateau, the atoms get stuck so stress hardening happens

Strain Energy

• The energy stored in a material as it is deformed: W =
�

F d∆l

• During the linear elastic phase the strain energy is 1
2k(∆l)2

• The strain energy density U =
�

σ dε is the energy stored in the material per unit volume

– U = W

V
=

�
F

V
d∆l =

�
F

AL0
d∆l =

�
F

A
d∆l

L0
=

�
σ dε

– Also known as specific strain energy
– Units of MJ/m3 since MPa = MN/m2 = MN · m/m3 = MJ/m3

– W = U · V0 where V0 is the original volume before deformation
– In the linear elastic region: W =

�
σ dε · V0 =

�
Eε dε · V0 = 1

2Eε2V0 = 1
2σεV0

– Strain energy density is a material property independent of the member
• Additional material properties:

4. Resilience: Max amount of energy the material can absorb before yielding; the area under the
curve in the linear elastic region

5. Toughness: Max amount of energy the material can absorb before failing; the area under the entire
stress-strain curve

Thermal Expansion
• Thermal strains εth are related to temperature changes by εth = α∆T , where α is the coefficient of

thermal expansion, a material constant
– Thermal strains only cause stresses if the material is not allowed to expand/contract
– Stresses caused by thermal strain can be calculated by Young’s modulus if the length of the

material is fixed

Lecture 7, Sep 27, 2021
Safety

• Types of forces

1. Dead loads – Things that can’t move – e.g. self-weight, added features (e.g. asphalt on a suspension
bridge, chairs in this lecture hall, often called superimposed dead loads)

– Generally well-known during design, low-uncertainty
2. Live loads – Things that can move – e.g. cars, people, wind

– Generally more uncertain and unpredictable
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– To design for these, we look for worst cases

• Once we know the types of load, we make a best guess

– For some things we take the average, e.g. cars

Figure 8: probablity distribution of stress

•

• The basic safety equation: σdemand < σcapacity, i.e. your structure should be able to handle more stress
than demanded

– This just tells you whether the structure will fall down, not whether it is safe
– σcapacity: Yield or ultimate strength?

* Generally if we have a yield strength σy, we should use that, because the ultimate strength of
e.g. steel is hard to measure and uncertain

– Stress demand and capacity usually follow a normal distribution (bell curve); there might be
structural imperfections leading to uncertainties in dead loads, and material imperfections might
lead to uncertainties in stress capacity

* This means that even if the average σdemand is greater than the average σcapacity, they might
still overlap

* The overlap is where the uncertainties make the stress demand greater than the capacity and
so the structure fails

* We want to minimize this overlap but it is not possible to make this zero (size of overlap is
related to risk of failure)

• A safe structure has σdemand < σcapacity and a low risk of it being otherwise

• 2 ways to deal with risk:

1. Limit states design (very complicated and an entire course on its own)
2. Allowable stress design (this course), aka working stress design

– Key concept: Factor of Safety FoS = σcapacity

σdemand
* If this number is less than 1, it will fall down
* If this number is greater than “some specified number”, then it is safe

• This “some specified number” can be determined using limit states design
• In the 1800s this would be 3-10 based on consequences for failure and warning (e.g. for

ductile metals like steel the FoS can be lower since there is a lot of warning before it
fails)

• In the 1960s FoS of 2 is typical
• Today, with more control on the materials, the FoS is typically about 1.7
• e.g. The Brooklyn bridge built in the 1980s has an FoS of 5, the Golden Gate bridge has

2.68, the Akashi Kaikyo bridge has 2.25; numbers go down over time because materials
are more well understood and uncertainties decrease
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• Allowable stress: σy

FoS and this is the amount of stress that the structure is allowed to take

– In this class the FoS will be given

Lecture 8, Sep 28, 2021
• Types of oscillations:

1. Mechanical
– Springs – we’ll be looking at this for this lecture
– Earthquakes
– Sound transmission
– Machine vibration

2. Electrical
– Power generation and transmission
– Electromagnetic (communications)
– Photonics

Dynamic Equilibrium
• Oscillating systems are not in static equilibrium, so we cannot use our usual methods
• We can apply D’Alembert’s Principle: Convert dynamic equilibrium (a ̸= 0) to equivalent static

equilibrium by introducing a fictitious inertial force
– This inertial force is Fi = ma and acts in the opposite direction of acceleration
– Think of it as inertia resisting acceleration
– By doing this we can convert it into a static system where

∑
F = 0, and we no longer have to

consider time
– The inertial force is fictitious but consistent with physics
–
∑

F = ma =⇒
∑

F − ma = 0 =⇒
∑

F − Fi = 0 if Fi = ma is considered a force
– Example: centrifugal force is not a real force but we still feel it

Free Vibration Without Gravity in One Dimension

Figure 9: Free vibration

• Consider a mass attached to a spring; ignoring all resistance, if the mass is pulled down and then
released, the system is in free vibration

• The system can be modelled by a second-order linear homogeneous DE: ma(t) + kx(t) = 0 =⇒
mx′′(t) + kx(t) = 0
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• This has solution x(t) = A sin(ωnt + ϕ), where A is amplitude, ωn is the natural angular frequency, and
ϕ is the phase delay

– If we substitute back this solution, we get ωn =
√

k

m
– This shows that the frequency is dependent only on the mass and spring stiffness, not on anything

else

– We can express the natural frequency in terms of Hz: fn = 1
2π

ωn = 1
2π

√
k

m
(because 2π radians

represent a full rotation/cycle)

– The natural period period is then 1
fn

= 2π

√
m

k
, with units of seconds

– The amplitude A and phase shift ϕ can be determined using the initial conditions (Initial Value
Problem)

Adding Gravity
• If we introduce gravity, the equation becomes inhomogeneous: ma(t)+kx(t) = 0 =⇒ mx′′(t)+kx(t) =

mg

• The modified solution has form x(t) = A sin(ωnt + ϕ) + ∆0, where k∆0 = mg =⇒ ∆0 = mg

k
– Essentially the system will now oscillate around this shifted point instead, but other properties

remain the same
– The general solution to an inhomogeneous linear ODE is the general solution to the homogeneous

DE plus a particular solution; intuitively in this case x = ∆0 represents the particular solution,
where the force of the spring and gravity are in balance and no initial movement, so the system
stays in that equilibrium forever

Other Methods for Calculating ω

• ωn and fn are important properties of the structure as it allows us to determine whether the structure
is susceptible to time-varying loads (resonance)

• Measuring k can be difficult, so we can compute fn from the static displacement ∆0 instead:
– k∆0 = mg =⇒ k = mg

∆0

– fn = 1
2π

√
k

m
= 1

2π

√
mg

∆0
· 1

m
= 1

2π

√
g

∆0
≈ 15.76√

∆0
Hz

– Note: This assumes ∆0 has units of mm

Lecture 9, Sep 28, 2021
Relationship Between Moment and Angular Acceleration

• If we apply a pure moment M , what is the angular acceleration of the mass?
– If the lever arm is y then M = Fy
– The angular acceleration is related to the translational acceleration: a = αy
– If we combine them with F = ma: M = Fy = (mαy)y = mαy2 = (my2)α
– The my2 term is the angular equivalent of mass, the moment of inertia Im

• M = Ima is the rotational analogue of Newtons second law, and Im has units of mass times length
squared

Calculating the Moment of Inertia
• To determine Im for non-point masses, we can break the object into smaller pieces:

–
– Im =

∑
Im,i =

∑
∆miy

2
i
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Figure 10: breaking the object into smaller pieces

• We can get the exact moment of inertia by taking an integral: Im =
�

M

y2 dm where M is the entire
mass

• For a 2-dimensional object with uniform density ρ this reduces to ρ

�
A

y2 dA

• The integral term
�

A

y2 dA is known as the second moment of area I, with dimensions of length to the
power of 4

Properties and Physical Interpretation of the Moment of Inertia
• From the formula we can see that I depends on the axis of rotation, and masses further from the axis

of rotation contribute more to the moment of inertia

Figure 11: moment of inertia for I-beam

•

• Example: W530 × 92 I-beam (530mm nominal height, 92kg/m weight); the moment of inertia about
the y axis is much lower because the masses are closer to the axis

Example Calculation
• Example: Calculate the second moment of area for a rectangle rotating about its middle axis
• dA = b dy where b is the width of the rectangle

• I =
� h

2

− h
2

by2 dy =
[

1
3by3

]h
2

− h
2

= bh3
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Lecture 10, Oct 4, 2021
Bending: Plane Sections Remain Plane

• Just as in the case with tension, the moments inside a bent member remain constant throughout the
member
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Figure 12: The vertical lines remain vertical when the beam is bent.

• Consider a series of vertical lines drawn on the beam L0 units apart
– The fundamental assumption for bending is that these lines stay straight lines when the beam is

bent
– It is assumed that the horizontal length at the centroid axis does not change
– The beam curves into an arc, with lines separating at the top and getting closer together at the

bottom (described by Hooke as “plane sections remain plane”)
• One way to measure how bent the beam is is to measure the angle, but that depends on the length of

the beam, so to quantify the bending we introduce the curvature ϕ = dθ

dx
, or in the discrete case, the

angle between two vertical lines divided by the original distance along them, L0

– The radius of curvature 1
ϕ

is the radius of the circle formed by the bent beam
– This is also equal to the rate of change of slope with respect to length
– This measure doesn’t depend on the length of the beam; no matter where we calculate it between

it is the same (with the simplifying assumptions)
• Curvature ϕ is a measure of bent-ness
• Bending produces strain because the distance between vertical lines changes except at the centroid
• Note: The following calculations assume a small deformation; these equations are good for angles up to

10°
• Consider the spacing between two points LAB located a distance y above the centroid

– The angle produced by bending is θAB = ϕL0

– The radius of the centroid is 1
ϕ

so the radius to the points A and B is y + 1
ϕ

– Therefore the new distance is L′
AB = (ϕL0)

(
y + 1

ϕ

)
= ϕyL0 + L0

– The strain between A and B is then ε(y) = ∆l

L0
= L′

AB − L0

L0
= ϕyL0 + L0 − L0

L0
= ϕy

• ε(y) = ϕy is the fundamental relationship between strain and curvature in a member
– Notice how the strains are not constant over the cross section and depends on y; at the very bottom

there is maximum compressive strain, at the top maximum tensile strain and at the centroid no
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strain

Flexural Stiffness
• Like how tension is related to elongation for axial forces, there is a relationship between the curvature

of a bent member and its carried moment
• Consider a cross-section; if we take a small slice of that cross section with area ∆A, then ∆F =

σ(y)∆A = Eϕy∆A
– Since this force doesn’t pass through the centroid axis, it produces a moment ∆M = ∆F · d =

∆F · y = Eϕy∆A · y = ϕEy2∆A
– Now we can take the integral to find the moment carried by the entire cross-section: M =�

A

ϕEy2 dA = ϕE

�
A

y2 dA

– Recall from last lecture that for a 2d object with constant density Im = ρI where the second
moment of area I =

�
A

y2 dA

– Therefore M = EI · ϕ
• EI is the flexural stiffness of the member, which relates the moment (force-based quantity) to the

curvature (displacement-based quantity)
– Axial force F ↔ Bending moment M
– Axial stiffness k ↔ Flexural stiffness EI
– Displacement ∆l ↔ Curvature ϕ
– F = k∆l ↔ M = EIϕ

Lecture 11, Oct 5, 2021
Structural Analysis

• Often we want to analyze the forces in a structure in response to loads such as objects, wind, earthquakes,
etc

• Stick models are used as simplifications, with members connected at joints
• Member types:

– Mostly horizontal: Beams (usually with less axial compression and maybe more bending)
– Mostly vertical: Columns (usually with a lot of axial compression)
– Diagonal: Beam-Columns

• Types of loads:
– Axial loads Fx = N (normal to cross section)
– Shear loads Fy = V (vertical)
– Moments and internal bending moments M

Supports
• Supports hold up the structure and create reaction forces to hold up the structure
• The reaction forces are closely related to the level of restraint of the support; e.g. a hinge stops all

translational movement but allows rotational movement
• As the amount of restraint provided by the support increases, its ability to provide a reaction force

along that degree of freedom increases
• In structural engineering, the 3 most common types of supports and connections are rollers, pins, and

fixed ends:
1. Rollers: Only resist translational forces in 1 direction and cannot resist forces in other directions

or moments
2. Pins/hinges: Cannot resist moment but resist translational movement

– When deformed, angles may change
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Figure 13: Types of supports

– When cut for FBD, there is an internal horizontal force and vertical force that are equal and
opposite between diagrams

3. Fixed ends/rigid connections: Allows no movement
– Even when deformed, fixed ends have angles of 90°, and the beams just bend
– When cut for FBD, there is an internal horizontal force, vertical force, and moment that are

equal and opposite between diagrams
• Whenever there is no motion in a degree of freedom for a support, there is a reaction force along that

degree of freedom
• Note: Supports in real life cannot be perfectly described by the 3 idealized supports above, so choosing

the type that best represents real life requires engineering judgement and experience
• A degree of freedom in this context is how many variables are needed to describe the system

– 3 degrees of freedom, 2 translational, 1 rotational, are used to describe a non-deformable body in
2D

– Supports fix some of them but leave some of them free, reducing the number of degrees of freedom

Solving for Reaction Forces – Free Body Diagrams
• To solve for reaction forces in a structure, free body diagrams are drawn for every interaction

• The 3 key equilibrium equations are used to solve for the unknown forces:


∑

Fx = 0∑
Fy = 0∑
M = 0

– Note: In 3 dimensions there are 3 axes of translational equilibrium and also 3 axes of rotational
equilibrium θx, θy, θz, together 6 degrees of freedom

Statically Determinate Structures
• A structure is statically determinate if its reaction forces can be directly solved for using the 3 equilibrium

equations

• Forces in statically determinate structures do not depend on the stiffness of the structure

• Most simple 2D structures are statically determinate if their supports provide 3 reaction forces (since
there are 3 equilibrium equations)
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Figure 14: Examples of the different types of systems

• Structures with fewer reaction forces than the number of equilibrium equations are called mechanisms,
because they are unstable and can accelerate when subject to an applied load

– If the system ends up being unsolvable the system would be moving since one of the degrees of
freedom is not in equilibrium

– If the system ends up being solvable, then it is not moving, but any applied force in the right
direction would cause it to move

• Statically indeterminate structures have more reaction forces than the number of equilibrium equations,
so solving them require considering other factors such as stiffness and load distribution

– The degree of indeterminacy is the number of reaction forces minus the number of equilibrium
equations

• (1) is a simply supported beam (pin on one end, roller on the other end) – these beams can bend and
change length freely

Example: Internal Hinges

• Some structures are built with an internal hinge, which provide only two translational forces
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• We can split the FBD at the hinge, which introduces 2 internal hinge forces, but 3 additional equilibrium
equations, effectively reducing the indeterminacy by 1

• On the left:


∑

Fx = 0 =⇒ Ax − Cx = 0∑
Fy = 0 =⇒ Ay − Cy = 0∑
M = 0 =⇒ hCx = 0

• On the right:


∑

Fx = 0 =⇒ Bx + Cx = 0∑
Fy = 0 =⇒ By + Cy − P = 0∑
M = 0 =⇒ L

2 P − hCx − LCy = 0
• Since we have 6 equations and 6 unknowns this system is now statically determinate

Lecture 12, Oct 11, 2021
Truss Bridges

• Trusses are assemblies of steel or wood connected to form lattice-like structures
• Modern truss bridges are commonly built using steel (often hollow tubes) bolted or welded together
• The cross members at the top are called wind bracings and resist horizontal loads caused by winds etc
• Why use trusses?

1. They’re light since most of their volume is air (including hollow members)
2. They’re stiff – they deform very little under loads (the taller the truss, the stiffer it is)
3. They’re very efficient

Design Process for Truss Bridges

Note these are elevation views (views from the side); there are also plan views that look at it from above

1. Define the truss geometry: The span, height, deck width and configuration are determined
• Increasing the height of the truss at the midspan reduces the forces in the top and bottom chords

but increases cost
• Also includes the number of vertical and diagonal members, which comes from experience

2. Estimate the joint loads: Estimate the point loads where the deck meets the structure
• Assumptions:

1. All connections are modelled as hinges/pins
2. All loads are applied at joints
– As a result of these assumptions, all members only carry axial loads (no bending)

• The loads are often assumed to be uniform, unless designing for trains or very short bridges where
every wheel matters

• Load estimations:
– The total load must take into account the weight of the deck, the self-weight of the truss

structure, and live loads such as people
– wtotal = wdeck + wstruct + wlive

– The live load is often taken as 5.0kPa, or 100lbs/ft2

– For wood decks wdeck can be estimated as 1.0kPa
– wstruct is typically between 0.5 to 1.0kPa when using hollow steel members to span distances

up to 100m
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– The joint load Pi = wtotalAtrib where Atrib is the joint’s tributary area, the area it is responsible
for supporting

–
3. Solve for the reaction forces and analyze all member forces
4. Size the members so they can safely resist the loads (lecture 15)
5. Repeat steps 1-4 to design cross bracing

• Cross bracing is added to resist horizontal loads caused by wind and instability effects (lectures
16-17)

6. Calculate the stiffness of the bridge by estimating the deflection at the midspan (lecture 18)
7. Design against dynamic loads: Testing for resonance (lecture 19)
8. Check if the initial estimate of structure weight is greater than the actual structure weight

• Initially the bridge was designed with an estimate of wstruct, so now we need to make sure that
estimate was reasonable

• If the real weight is greater than wstruct the process must be repeated with a more conservative
estimate

9. Detailed design
• Everything before this is the preliminary design; the actual detailed process for the design is more

complicated and not covered in first year

Analysis By Method of Sections (From Lecture 13)
• With the Method of Joints, calculating forces in the middle of the bridge is a tedious process; for

preliminary designs and estimates the Method of Sections can be used to get them faster

• This method uses all 3 equilibrium equations to solve for up to 3 unknown member forces that pass
through a section of the truss

• The truss is cut at some location and 2 free body diagrams are constructed:

Figure 15: free body diagrams

•
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• In Diagram A,


∑

Fx = 0 =⇒ DF + EFx + EG = 0∑
Fy = 0 =⇒ 150 − 60 − 60 + EFy = 0∑
M = 0 =⇒ 60 · 4 − 150 · 8 − 3DF = 0

– The equations of equilibrium should only include the support reaction forces, the joint loads, and
the unknown internal forces we’re trying to solve for

– Note point E was taken for the moments, since this eliminates EF , EG and load at E, leaving
only 1 unknown force (DF ) in the equation

Lecture 13, Oct 12, 2021
Truss Analysis

• Two methods for analyzing truss bridges:
1. Method of joints, more suitable for analyzing forces over the whole bridge; uses only the translational

equilibrium equations
2. Method of sections, more suitable for quickly analyzing forces over sections of the bridge; uses all

3 equilibrium equations
• First the joint loads are determined from the distributed area loads
• The reaction forces from the supports are then calculated using equilibrium equations
• For a simply supported bridge with a roller on one end and a pin on the other end, the vertical load is

shared equally between them due to symmetry, making each vertical reaction force equal to half the
total load

Method of Joints
• The Method of Joints analyzes the bridge joint by joint

• Start at the end joints that meet the supports, since all other joints have too many unknown forces

Figure 16: fbd at a joint

•

• Once we have the free body diagrams we can calculate the forces at this joint; if force vectors form a
closed loop when arranged tip-to-tail, the joint is in equilibrium

• With these forces we can now move on to other joints; note the order of joints is important, as some
joints may still have too many forces to be solved

– Since we’re only using the two translational equilibrium equations, any joint that has 3 or more
unknown forces is unsolvable at the moment

• Note the forces on the joints are applied by the members, not to the members; as a result, special care
must be taken to tell whether a member is in tension or compression

– Since the joint forces are applied by the members, the actual force applied to the members is the
exact opposite by Newton’s third law
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Figure 17: Newton’s third law applied to the member

–

– In the following image, BD is in compression, and BC is in tension

Figure 18: forces at a joint

–

• After repeating this process for half of the joints (the other half can be determined by symmetry), the
final forces are presented:

Figure 19: solved forces in the truss

•

• Note that the sign convention is tension is positive and compression is negative
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Method of Sections
• With the Method of Joints, calculating forces in the middle of the bridge is a tedious process; for

preliminary designs and estimates the Method of Sections can be used to get them faster

• This method uses all 3 equilibrium equations to solve for up to 3 unknown member forces that pass
through a section of the truss

• The truss is cut at some location and 2 free body diagrams are constructed:

Figure 20: free body diagrams

•

• In Diagram A,


∑

Fx = 0 =⇒ DF + EFx + EG = 0∑
Fy = 0 =⇒ 150 − 60 − 60 + EFy = 0∑
M = 0 =⇒ 60 · 4 − 150 · 8 − 3DF = 0

– The equations of equilibrium should only include the support reaction forces, the joint loads, and
the unknown internal forces we’re trying to solve for

– Note point E was taken for the moments, since this eliminates EF , EG and load at E, leaving
only 1 unknown force (DF ) in the equation

Lecture 14, Oct 13, 2021
Euler Buckling

• Methods under compression can fail in 2 ways:
1. Crushing: Typically occurs for short, stocky members; the member shortens; the force that causes

crushing is the squash load
– The squash load is simply Pc = σcA

2. Buckling: Typically occurs for long, thin members; the member curves and folds

– The load that causes this is the Euler load Pe = π2EI

L2
• The original length is the longest, the buckled length is less long and the shortest length is the crushed

length; since the buckled length is greater than the crushed length, it has less strain energy and so it is
the lower energy state so nature prefers it

• The method in which a compressive member fails depends on the force required to cause crushing or
buckling; whichever requires less force will be the method of failure

Derivation of Euler Load
• Fundamental assumptions:
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Figure 21: Two methods of failure for members under compressive strain

Figure 22: Derivation of the Euler load
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1. The material is homogeneous and linear elastic (constant Young’s modulus E and second moment
of area I)

2. The ends are free to rotate and the top is free to move vertically (i.e. a roller at the top, a pin at
the bottom)

3. The member starts straight and the ends cannot move horizontally
• At the cut, the compressive force P and the vertical support are equal and in opposite directions and

separated by a distance, so they form a couple; to resist it the beam carries an internal clockwise
moment M

– Since P and the vertical support force form a couple, Py = M = EIϕ
– Recall that the curvature is the derivative of the slope, which is the second derivative of displacement;

since the second derivative is negative in this case, we have ϕ = − d2y

dx2
– The curvature is the negative of the second derivative; note when we have a positive slope

(curvature) the beam is concave down so the second derivative is negative
* Explained more in lecture 20

• Combine the equations to get P

EI
y = − d2y

dx2 , which is a differential equation with solution in the form

of y = A sin(ωx + B); substituting this solution yields ω =
√

P

EI
– Since the ends are fixed, y(0) = 0 and y(L) = 0

* Substituting y(0) = 0 =⇒ A sin(B) = 0 =⇒ B = 0
* And then y(L) = 0 =⇒ A sin(ωL) = 0 =⇒ ωL = nπ =⇒ ω = nπ

L
for n ∈ Z

– Substitute nπ

L
= ω =

√
P

EI
=⇒ n2π2

L2 = P

EI
=⇒ P = n2π2EI

L2

– To obtain the smallest nonzero value for P we take n = 1 to get Pe = π2EI

L2

Higher Modes of Buckling

Figure 23: Higher modes of buckling

• The n term in P = n2π2EI

L2 and ω = nπ

L
=⇒ y(x) = A sin

(nπ

L
x
)

lets us “choose” the number of
half-oscillations y goes through down the entire beam

• The higher modes of buckling do occur but are much more rare because the P force is much greater
• Oscillations in y correspond to more complex types of buckling, where instead of curving into 1 arc, the

beam curves into a sine wave; this corresponds to higher modes of buckling
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Buckling of Imperfect Members

Figure 24: Ideal vs. realistic buckling curves

• Unlike tension, buckling is an unstable equilibrium; once a member starts to buckle it will continue to
weaken and curve more until it fails

• Under ideal conditions members will stay straight until the Euler load is reached, at which point they
suddenly buckle and the force stays constant

• In real life, as the angle of buckling gets larger, the force required gets smaller
• However, real members are imperfect and have some initial lateral deflection at their midpoint ∆0

• Richard Southwell derived the equation ∆lat = ∆0

1 − P
Pcrit

that relates lateral deflection ∆lat to load P

– The Pcrit is the critical buckling load, and for members satisfying the Euler conditions (homogeneous,
elastic, roller at one end and pin at the other) this is equal to the Euler load Pe

Lecture 15, Oct 18, 2021
Design Process for Trusses

1. Determine loading
2. Determine joint forces
3. Solve for forces in the truss (method of joints or method of sections)
4. Select the size and safety of the members

Design of Tension Members
• Structures are designed according to the yield instead of the ultimate strength, since the savings are

not worth the risks and large deformations are undesirable
• An appropriate FoS for yield is 2.0, with most steel having a σy = 350MPa
• Second moments of area don’t need to be considered for tension members since they cannot buckle

Design of Compression Members
• To prevent crushing/squashing, the same FoS and design process for tension members can be used

• To prevent buckling, a higher FoS of 3.0 is used because bucking is more dangerous

– Buckling occurs more suddenly and is more unstable so the consequences are greater
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– Post-bucking strength can be 0, unlike post-yielding strength which is greater than the yield
strength

– If a member must carry a compressive force F , then Pe = π2EI

L2 =⇒ I = PeL2

π2E
=⇒ I ≥ 3.0FL2

π2E

• Unlike the yield stress, the Euler buckling stress σe = Pe

A
= π2EI

AL2 does depend on the length of the
member and is not a material property

– If we set the radius of gyration r =
√

I

A
, then σe = π2EI

AL2 = π2E

L2
I

A
= π2E

L2 r2 = π2E(
L
r

)2

– L

r
is the slenderness ratio, a dimensionless quantity that describes how easy the member buckles;

members with larger values tend to buckle instead of squash
* Larger values means that σe is smaller, so the stress required to cause buckling is smaller so

buckling is more likely
– The radius of gyration is not a physical quantity and does not actually correspond to a circle

* Since I is a property that affects the flexural stiffness of a member and A affects the axial
stiffness, the radius of gyration is a ratio of a member’s flexural stiffness to its axial stiffness

* If a member is more easily bent than stretched/compressed (low flexural stiffness, high axial
stiffness), then r will be small, which means the slenderness ratio is large and the member is
more likely to buckle

* If we had 2 point areas, both A

2 , with a distance between 2r between them, and this had the
same moment of inertia as the member, the r is the radius of gyration

Figure 25: Plot of failure stress against slenderness ratio

•

• For low slenderness ratios σe is very high so the member fails at its yield strength; for large slenderness
ratios σe decreases rapidly so the member fails at a fraction of its yield strength
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• The red curve is the failure stress of the member, also known as the failure envelope

• The blue curve instead considers the minimum of the allowable yield stress and buckling stress and is
the one we should design for

• Under the blue curve is safe, between blue and red is unsafe but won’t fail, and outside red will fail

• Modern design codes also limit the slenderness ratio (often to 200) to discourage the use of very slender
members that are vulnerable to unexpected load changes; L

r
≤ 200 =⇒ r ≥ L

200

Hollow Structural Sections (HSS)
• HSS are hollow steel tubes formed by rolling sheets of steel and come in square, rectangular, or circular

cross sections; they are light, strong and stiff and often used for truss design

• HSS are strong, stiff, and light

• Height, width and thickness are the key geometric properties for HSS

Figure 26: HSS

•

• The designation of an HSS (the nominal dimensions) is different than the size (the actual dimensions);
in reality HSS 305x203x13 will have a wall thickness of 12.7mm, not 13mm, because imperial vs metric
units

• Typically one HSS size is chosen for the entire top chord or bottom chord of a bridge; the web members
(which are smaller than the chords so they can connect together) can be individually sized to their loads

Lecture 16, Oct 19, 2021
Resisting Wind Loads

• Wind forces can be calculated with F = 1
2ρv2cDA, where ρ is air density, v air velocity, A is the frontal

area on which the wind acts, and cD is the drag coefficient
– For boxy objects like walls and most structural members we can take a conservative value of 1.5,

and assuming a wind speed of 170km/h the wind load is approximately 2.0kPa of horizontal load
• Cross bracing is added to connect the top chords to each other and the bottom chords to each other,

just like how vertical trusses transfer gravitational load
• Wind can blow or pull away on either side, creating 4 possible loading combinations

– Members must be designed for both tension and compression
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Figure 27: Arrangement of members in the top and bottom cross bracings
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Solving For Forces
• In the bottom bracing, method of joints/sections can be used as usual, after first determining the

reaction forces Ry,l and Ry,r

• There are no diagonal members in the left and rightmost sections of the top cross bracing so the bridge
could be entered; instead the connections are typically stiffened

• We can still analyze it using method of joints/sections by assuming that the reaction forces provided by
the supports can be transferred to the stiff connections and ignoring the end sections

• Actually moving this support force to the top requires a good frame design, which is not covered in this
course

Calculating Joint Loads

Figure 28: Tributary area of the joints

• To calculate the joint loads, we need to know the frontal area of each joint; this is determined by the
tributary area method, but is more complicated

• In the figure above joint B will have a greater load because of the handrail
• In joint A, we can approximate the frontal area by summing the area of each piece, which is approximated

by its length times its width
• Handrails consisting of vertical members close together can be approximated by a solid surface, because

the resulting turbulence from air passing through increases the drag force
• In joint B, the frontal area of the handrail is much larger than the frontal area of the HSS, so the HSS

can be ignored for simplicity

Lecture 17, Oct 20, 2021
Truss Deformations

• When a truss is loaded, it will deform, and we need to know how much it deforms, as well as how much
it vibrates

• Usually we limit the displacement to ∆ <
L

300
• We need a general method to calculate the displacements of trusses
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Figure 29: Truss deforming by an amount ∆

• An energy based approach can be used: by conservation of energy, the external work done Eext = Eint,
the internal work done

– External work is work done by “external forces”, that is, applied loads such as cars on a truss
bridge; since this force moves over a distance, it does work

– Internal work is the strain energy in each member
– This assumes that there are no other energy sources or sinks such as friction

Figure 30: Diagram

•

• Wext = Win =⇒
�

Fx d∆x +
�

Fy d∆y + · · · =
�

PBC d∆lBC +
�

PAB d∆lAB + · · ·

– Assume Hooke’s law applies, this simplifies to 1
2Fx∆xB + 1

2Fy∆yb = 1
2PAB∆lAB + 1

2PBC∆lBC

– We know the internal forces PAB and PBC and their changes in length, so we know the right hand
side

– We also know the applied loads Fx and Fy, so the unknowns are ∆xB and ∆yB, but only one
equation, so we need something else

Method of Virtual Work
• For this method, we remove all the real loads, but keep the geometry, the boundary conditions, and the

material properties to get us the virtual system

• We apply a single load F ∗ onto the new virtual system

– This load has an arbitrary value and it eventually cancels out
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• The load is applied at the location of interest in the direction of interest

– Usually we choose the middle of the structure going downwards to calculate the maximum vertical
deformation in a truss

• Since F ∗ is arbitrary, we can make it 1 for simplicity

Figure 31: Virtual work diagram

•

• Wext = Wint =⇒ 1
2F ∗∆y∗

B = 1
2P ∗

AB∆l∗
AB + 1

2P ∗
BC∆l∗

BC

– The right hand side and F ∗ are known since we can solve for them, so we have one unknown and
can solve for ∆y∗

B

• We have a series of displacements and a series of forces

• We can take the displacements from the real system and mix it with the forces from the virtual system
and it still works

• The principle of virtual work says that the external energy from the virtual external forces moving
through the real external displacements will be equal to the internal energy from the virtual internal
forces moving through the real internal displacement

– i.e. The forces we’re going to use are the virtual ones, but the displacements are real; this allows
us to solve for real displacement

• Apply the principle: Wext = Wint =⇒ F ∗
x ∆xB + F ∗

y ∆yB = P ∗
AB∆lAB + P ∗

BC∆lBC

– The 1
2 doesn’t just cancel out; it’s more correct this way and easier too

– In our case F ∗
x = 0 =⇒ F ∗

y ∆yB = P ∗
AB∆lAB + P ∗

BC∆lBC , and since F ∗ = 1 we now have an
equation for the displacement

– Virtual: F ∗
y , P ∗

AB , P ∗
BC , which come from solving method of joints analysis of the virtual system

* The P ∗
AB and P ∗

BCs tell you how important each member’s displacement is
– Real: ∆yB =?, ∆LAB , ∆LBC , the latter two can be solved and are the internal change in length

due to the real loads
– When we use this method we need to solve the system twice, once for the real loads to get the real

displacements, and once with the virtual loads to get the virtual internal forces

• Overall procedure:

1. Solve for the real internal forces in the truss (real loads)
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2. Calculate the internal changes in length for each member from the real loads (∆lBC , ∆lAB)
3. Remove the real loads and apply a 1kN virtual load at the joint of interest in the direction of

interest
4. Solve for all internal virtual forces due to the virtual load

5. F ∗∆ =
n∑

i=1
P ∗

i ∆li

Why the Method Works
• Assuming members are linear elastic, the behaviour of the entire structure is linear and follows the

superposition principle; if we combine two loads then the combined deformation is simply equal to the
sum of the individual deformations

• This means we can combine the virtual load + deformation and the real load + deformation into a
single system:

Figure 32: System with both real and virtual load

•

• We can then analyze the load-displacement graphs for both the internal and external loads:

• In the graph, the red area is the work done by the real loads, and the blue area is the work done by the
virtual loads

• The top graphs show the plots for external forces (in both the x and y directions), and the bottom
graphs show the plots for internal forces (in both the left and right members); because we added an
additional virtual load in only the y direction, the top right graph has some blue area caused by the
virtual load

• Because of superposition and conservation of energy, the combined area of the top two graphs and the
combined area of the bottom two graphs are equal (internal work equals external work)

• Additionally, because the real and virtual forces can exist on their own and they also have their internal
work equal external work, the total blue area in the top graph is equal to the total blue area in the
bottom graph, and the total red area in the top graph is equal to the total red area in the bottom graph

• Therefore, the total purple area in the top graph is equal to the total purple area in the bottom
graph; this purple area represents the product of a real displacement and a virtual force, which is why
F ∗∆ =

∑
P ∗

i ∆li
– The purple area is a rectangle instead of a triangle, which is why in F ∗

x ∆xB +F ∗
y ∆yB = P ∗

AB∆lAB +

P ∗
BC∆lBC , there is no 1

2 multiplier
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Figure 33: Load displacement plots for internal and external forces
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Lecture 19, Oct 25, 2021
Damped Free Vibrations

• Oscillating systems will eventually stop due to loss of energy by damping, which could be engineered or
an inherent system property

• Damping is quantified by the damping ratio β, the ratio between the provided damping properties of
the system and the minimum amount of damping to prevent it from oscillating completely

– Critical damping is the amount of damping that can make the system stop oscillating the fastest
– More damping (overdamped) will make the system reach equilibrium slower, and less damping

(underdamped) will cause it to oscillate
• In civil structures β range from 0 to 0.05

• For a damped system, the differential equation becomes m
d2x

dt2 + 2β
√

mk
dx

dt
+ kx = 0

• The solution is an exponentially decaying sinusoid with the form x(t) = Ae−βωnt sin(ωdt + ϕ) + ∆0,
where:

– A is the amplitude of oscillation
– β is the damping ratio

– ωn is the natural frequency
√

k

m
– ϕ is the phase delay
– ∆0 is where the system naturally settles due to gravity
– ωd is the damped frequency, related to ωn by ωd = ωn

√
1 − β2

* Since β is usually low in civil structures, ωd ≈ ωn

Forced Oscillations
• In reality structures may be subjected to dynamic loading due to the movement of people etc; in the

simplest case the load is sinusoidal with F (t) = F0 sin(ωt)

• Substituting the dynamic load into the equation: m
d2x

dt2 + 2β
√

mk
dx

dt
+ kx = F0 sin(ωt)

• The complete solution is outside the scope of this course but consists of the sum of two parts: the
transient solution, which dominates when t is small, and the steady-state solution, which dominates
when t is large and dictates the long-term behaviour of the system

• The steady state solution is more relevant to design and can be expressed as x(t) = DAF · F0

k
sin(ωt +

ϕ) + ∆0

– DAF is the dynamic amplification factor, calculated as 1√(
1 −

(
f

fn

)2
)2

+
(

2βf
fn

)2
, where f is

the driving frequency and fn is the natural frequency of the system
– From the equation for the DAF we can see that the response of the system is strongly influenced

by f

fn
, as it influences both the frequency and the amplitude of the response through the DAF

Resonance
• The DAF has the highest value when the driving frequency is approximately equal to the natural

frequency, which leads to a very high increase in amplitude known as resonance
• Increasing the amount of damping increases β and reduces the DAF, especially the peak value at

resonance
• The DAF is 1 when f

fn
is 0, and gradually becomes 0 as the ratio f

fn
becomes large, with a peak at

f

fn
= 1
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Figure 34: Response to an input load with f

fn
= 2.5 (left) and f

fn
= 0.5

Figure 35: Influence of f

fn
on the DAF for various values of β
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Designing for Dynamic Effects
• To check for dynamic effects, we don’t need to solve the whole system; we just need to check whether

the maximum stress results in failure
• Consider a set of dynamic loads wtot = wsta + w0 sin(ωt), where wsta is the stationary component of

loading, which does not vary in time, such as the dead load of the structure and the weight of a standing
crowd of people; w0 and ω0 is the dynamic load caused by, for example, a crow of people walking around

• When designing a pedestrian bridge the frequency of loading caused by walking is typically assumed to
be 2Hz; therefore unless there is significant damping, having a natural frequency close to 2Hz can lead
to large oscillations and possibly collapsing the structure

• The equivalent static load is then weq = wsta + DAF · ω0 as the maximum amplitude of oscillation is
scaled by the DAF

• The DAF can be calculated once the damping β and natural frequency fn are determined; using the
equivalent static load we can then check whether the members can withstand the stresses

• For a point load at the midspan, the natural frequency can be estimated to be fn = 15.76√
∆0

; for a UDL

at the midspan fn = 17.76√
∆0

, where ∆0 is the midspan deflection under wsta in mm, i.e. how much the
midspan of the structure deforms with just the static load

Lecture 20, Oct 26, 2021
Stress Resultants: Beyond Tension and Compression

Figure 36: Stress resultants

• By cutting a beam we expose internal forces; these forces are the stress resultants
• Note that the overall beam is in neither tension nor compression
• The horizontal force parallel to the longitudinal axis is the axial load N or P , the vertical force

perpendicular to the axis is the shear force V and the moment is the bending moment M
– If there is too much deformation due to the shear force, the beam will deform in a shear transform
– We design our trusses so that both the moment and shear force are zero; in reality there is some

caused by the self-weight but this is ignored

• Using the equations of equilibrium:


∑

Fx = 0 =⇒ N = Rx,L∑
Fy = 0 =⇒ V = Ry,L − wx∑
Mo = 0 =⇒ M = Ry,Lx − (wx)

(
1
2x

)
• Notice that unlike tension/compression these forces change depending on where you cut the beam,

i.e. they vary over the length
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Shear Force and Bending Moment Diagrams

Figure 37: Shear force and bending moment diagram

• It turns out that the shear force is related to the vertical applied loads w(x) by w(x) = d
dx

V (x), and

the moment is related dM

dx
= V (x); i.e. the shear is the derivative of bending moment, and the applied

load is the derivative of shear

– Applied loads will increase the shear; the shear force has sudden jumps at locations where there
are concentrated reaction forces or loads

– Shear forces will increase the moment

• ∆M =
� B

A

V (x) dx and ∆V =
� B

A

w(x) dx

• Therefore we can find the graph of shear and moment over the length of a member by integrating the
loads

• For a shear force diagram, imagine you’re walking across the bridge from the left to the right and
accumulating the loads

• For a bending moment diagram, take the area under the shear force diagram

• We know the shear force and bending moment diagrams are correct if they start and end at 0

• Upward loads cause positive shear and downward loads cause negative shear (from left to right)
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• Positive bending moments are drawn below the axis and causes a positive moment (from the left to the
right); negative moments are drawn above the axis and cause negative moments

Figure 38: Sign convention for shear force

•

Figure 39: Sign convention for bending moment

•

Lecture 21, Oct 27, 2021
• Once we calculate the bending moments and shear forces, we want to ask whether the structure is safe

and how much it will deform

Navier’s Equation
• Recall that the longitudinal strain in a bending member is ε(y) = ϕy where y is the distance above the

centroidal axis
• The stress is then σ(y) = Eϕy, and if we consider a very small area of the cross section dA, then

dF (y) = σ(y) dA = Eϕy dA; this force produces a moment about the neutral axis dM(y) = ydF (y) =
Eϕy2 dA

• If we integrate this we get the axial force N =
�

A

Eϕy dA = 0, equal to zero because when subjected to

pure bending the axial force will always be zero; this requires that the first moment of area
�

A

y dA = 0

(this will be used in the next lecture)
– Essentially half of the cross section will be in tension and the other half will be in compression, so

when the integral is taken over the entire thing they cancel out
• Integrating dM gets us M =

�
A

Eϕy2 dA = Eϕ

�
y2 dA = EIϕ

• Combining this and σ = Eϕy, we get σ(y) = My

I
, which is called Navier’s Equation, which relates

flexural stress to bending moment

Steel Wide Flange Members
• Wide-flange sections, also known as I-beams or H-piles, are commonly used in members that bend since

they can carry bending moments very efficiently
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• According to Navier’s equation, the bending stresses are the greatest at the top and bottom, so it is
often convenient to consider those points only

•


σmax,top = Mytop

I
= M

Stop

σmax,bot = Mybot

I
= M

Sbot

, where S = I

y
is the section modulus

• The middle is the web and the top and bottom are the flanges

Lecture 22, Nov 1, 2021
Calculating the Centroidal Axis

•
�

A

y dA = 0, derived in the previous lecture, can be used to determine whether the centroidal axis has
been determined correctly

– This integral is typically not evaluated analytically and instead broken up into
n∑

i=1
yiAi, where yi

is the distance between the area component and the centroidal axis
• We can perform a coordinate transform yi = ȳ − yi,b, where ȳ is the location of the area component

relative to the base of the cross section and yi,b is the vertical distance between the base of the cross
section and the centroid, so 0 =

∑
(ȳ − yi,b)Ai =⇒

∑
ȳAi =

∑
yi,bAi; since ȳ is a constant,

ȳ
∑

Ai =
∑

yi,bAi =⇒ ȳ = 1
A

n∑
i=1

yi,bAi

• The centroidal axis is essentially a centre of mass
• As long as the shape can be broken up into simple shapes that we can determine the centroids of, we

can use this to calculate the centroidal axis

Parallel Axis Theorem

• For simple shapes such as rectangles
(

bh3

12

)
or circles

(
πd4

64

)
, a simple equation for I can be explicitly

evaluated; more complex shapes need another method
• We can try breaking up the cross section into smaller pieces and summing them up to get the overall I
• When calculating I for these smaller pieces, not all of them will be about their local centroidal axes; I0,

the second moment of area about the local centroidal axis, is not the same as Ii, the second moment of
area about the global centroidal axis

• If the local centroidal axis is di from the axis of rotation, then Ii =
�

Ai

(y + di)2 dA

=
�

Ai

(y2 + 2diy + d2
i ) dA

=
�

Ai

y2 dA +
�

Ai

2diy dA +
�

Ai

d2 dA

= I0,i + 2di

�
Ai

y dA + d2
i

�
Ai

dA

= I0,i + Aid
2
i

• This is known as the parallel axis theorem and allows I to be calculated about an axis parallel to the

local centroidal axis; applied to each piece we get I =
n∑

i=1
(I0,i + Aid

2
i ), where I0,i is the local second

moment of area, Ai is the area of each piece and di is the distance between the centroidal axes
• The parallel axis theorem can be interpreted as the total inertia being a sum of the inertia from first

translating about the global axis, and then rotating about the shape’s own centroidal axis:
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•

Summary and Tips
• For shapes with a horizontal axis of symmetry, the local centroidal axis for all components is the same

centre axis, so we can subtract components to calculate more complex shapes

Figure 40: Calculating I by subtracting components

•

• Each component shape is much simpler to calculate, and we can sum them together without having to
use the parallel axis theorem because due to symmetry all their centroidal axes are the same

• In summary, to calculate flexural stresses, ȳ and I must be determined to calculate stresses, strains and
curvature; the steps are as follows:

1. Break up the cross section into simple shapes whose centroids are yi,b from the bottom of the
member

2. Determine the centroidal axis using ȳ = 1
A

n∑
i=1

yi,bAi

3. Calculate the distances between the local centroids of the component areas and the global centroidal
axis, di

4. Use the parallel axis theorem to determine I =
n∑

i=1
(I0,i + Aid

2
i )
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Lecture 23, Nov 2, 2021
Curvature Diagrams

• Like shear and moment diagrams, we can draw curvature diagrams
• Recall ϕ = M

EI
, so we can use this and the bending moment diagram to draw a curvature diagram

(note EI is usually a constant, so the BMD and curvature diagrams are usually the same shape, just
scaled by a constant; EI is not constant if the shape has a changing cross section or is not made of a
uniform material)

– The units of ϕ is rad/mm
– Curvature can have jumps due to changing EI, but the moment diagram is always continuous

• Note that the y in σ = My

I
is not the same as the y in ϕ = d2y

dx2 (for small angles only); the first is
internally in the member itself, the second is the deflection of the beam (y(x) is the displaced shape of
the beam)

– If angles are not small, then ϕ =
d2y
dx2(

1 +
(

dy
dx

)2
) 3

2

– Angles are usually very small so dy

dx
is small and even more so when squared; the difference it

causes is usually less than the uncertainties of the material constants so it’s irrelevant
• Even though we know the curvature, we still don’t know the displaced shape y(x); to do this we need

to double integrate, but this is a lot of work
– Integrating ϕ gets θ, and integrating θ gets us y(x)
– Example: Consider a beam with a wkN/m distributed load on top; the max bending moment is

wL2

8 can can be modelled by M(x) = x(L − x)w
2

* The curvature is x(L − x)w
2EI

= wxL

2EI
− wx2

2EI

* θ =
�

ϕ dx = wx2L

4EI
− wx3

6EI
+ C1

* y =
�

θ dx = wx3L

12EI
− wx4

24EI
+ C1x + C2

* Using our initial conditions, C2 = 0 and C1 = − wL3

24EI

* To test this we can evaluate at x = L

2 , since the structure is symmetric the slope should be 0
at this point

* y(x) = wx3L

12EI
− wx4

24EI
− wL3x

24EI
* Note the signs might be weird

– Even though it might be easy in this case, it is usually very hard; in this case we had a single
continuous equation for the bending moment, but if we had point loads or other more complex
loading types there will be lots of pieces in the moment equation

– The moment equation is usually hard to obtain
• To get the shape more easily, we can use the two Moment Area Theorems

First Moment Area Theorem (θ)

• Since curvature ϕ = dθ

dx
the change in slope over the change in length, so by the fundamental theorem

of calculus, the change in slope between two points ∆θAB is the integral of the curvature
– Note θ(x) is the slope of the beam at x

• ∆θAB =
� B

A

ϕ(x) dx is the first Moment Area Theorem, which states that the change in slope
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between any two sections of a deflected beam is equal to the area under the curvature
diagram between those two sections

• Note that since this method only gives us the change, we need a point where the slope is known
• Signs are not automatic and must be determined using intuition

Second Moment Area Theorem (∆)

• ∆ =
�

θ dx so we can do an integration-like process
• θ is the area under the curve between two regions plus a constant C1

• ∆ =
�

(A + C1) dx

• If we pretend that A is not a function of x, then we get Ax + C1x + C2
• But since A is a function of x, we have to multiply by x̄ instead of x for Ax̄ + C1x + C2, where x̄ is the

distance to the centroid of the area under the curvature diagram
• C1x + C2 is a line, which tells us that our answer is going to have a linear offset
• Geometrically this line is the tangent to the displaced shape at A
• Note δBA has the displacement at B, the tangent at A, and the area under the curvature diagram

between A and B

• If the area under the curve is complicated we can break it up into pieces and have δBA =
n∑

i=1
Aidi,

where Ai is the area of each piece and di is the horizontal distance between B and the centroid of the
piece i

• For any two points A and B along the deflected beam, the tangential deivation of point B,
δBA, is equal to the product of the area under ϕ(x) betweeen A and B, and the distance
from the centroid of the diagram between A and B, to B (i.e. the first moment of area
about point D)

Figure 41: Summary of Moment Area Theorem 2; δ is the tangential deviation

Areas and Centroids of Common Shapes
• When using these two theorems, the areas and centroids of many different shapes are needed; these are

available in the appendix
• If the cross sections are more complex but can be broken down into a number of common shapes, then

we can still apply the two Moment Area Theorems and sum up the contributions from each piece
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Figure 42: Diagram of the derivation of the Second Moment Area Theorem

•


∆θAB =

∑
i = 1n

[�
ϕ(x) dx

]
i

δDT =
n∑

i=1

[
x̄

�
ϕ(x) dx

]
i

Lecture 24, Nov 3, 2021
Using Moment Area Theorems to Analyze Structures

• Although the MATs allow us to calculate change in slope and tangential deflection, we still don’t know
the absolute slope or deflection at a point unless we also use other information about the structure

• Generally to analyze the displacements and slopes of a loaded member the steps are:
1. Calculate the reaction forces
2. Draw the shear force, bending moment, and curvature diagrams
3. Sketch out and estimate the approximate shape of the deformed member
4. Identify locations where the deflection and slope are known by considering supports and loading

conditions (e.g. locations where the tangent is horizontal)
5. Calculate slope and displacement at a location of interest by using the known location and the

MATs

Case 1: Known Horizontal Tangent due to Support Conditions
• Consider a cantilever with a point load at its tip; since it is attached by a fixed end, the tangent at the

support will always be horizontal
• The max bending moment is at the support, with magnitude PL; thus the area under the curvature

diagram is 1
2L

PL

EI
= PL2

2EI
, which is the slope at the tip

• Since the tangent is horizontal at the support, if we calculate δ from this point, the tangential
displacements are just the real displacements

• The tip displacement is ∆ =
(

1
2L

PL

EI

)(
2
3L

)
= PL3

3EI
(note 2

3L is because the centroid of this triangle

is 1
3L from the left side, so the distance between that and our point of interest is 2

3L)

Case 2: Known Horizontal Tangent due to Symmetry
• When the loading is symmetric, there is a horizontal tangent in the middle
• The slope at the right support is equal to the area under the diagram between C and D, since the

tangent is horizontal at C: θD = 1
2

L

2
PL

4EI
= PL2

16EI
• We can also use the tangential deviation from C to calculate displacements; suppose we want to know

the upwards displacement of E, then ∆E = δEC − δDC
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Figure 43: Applying the MATs on a cantilever

Figure 44: Applying the MATs on symmetric loading
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– For δEC the region has area PL2

16EI
; the centroid of the area we’re considering is at L

3 · 2 to the right

of the midpoint, so the distance of E from this is 3
2

L

2 + L

2 = 5L

6 , so δEC = PL2

16EI

5L

6 = 5PL3

96EI

– Similarly δDC = PL2

16EI

(
2
3

L

2

)
= PL3

48EI

– Their difference is then ∆E = PL3

32EI

Case 3: No Known Horizontal Tangents

Figure 45: Applying the MATs to asymmetrical loading

• We can still estimate the displacements and slopes by determining the tangential derivation of supports
• If the displacements are small then θA ≈ δCA

L
• To calculate the tangential derivation we divide the area under the curvature diagram into two triangles:

– Left piece has a width of 2L

3 so an area 1
2

2L

3
2PL

9EI
; the centroid of this piece is located 1

3
2L

3 to

the left of the end of the piece, so the distance of C from the centroid is 2L

9 + L

3
– Right piece has a width of L

3 so an area 1
2

L

3
2PL

9EI
; the centroid is 1

3
L

3 to the right, so the distance

from C is 2
3

L

3
– Together δCA =

(
1
2

L

3
2PL

9EI

)(
2L

9 + L

3

)
+
(

1
2

L

3
2PL

9EI

)(
2
3

L

3

)
= 4PL3

81EI
• θA is now known and can be used as a reference if we want to find the slope somewhere along the

member
• To calculate the deflection, use the tangential deviation from A, and use similar triangles

– Example: To calculate the deflection at B, θA = δCA

L
= ∆B + δBA

1
2 L

; δBA can be obtained by using

MAT2 again
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Lecture 25, Nov 15, 2021
Shear Stresses

Figure 46: Shear stresses in beams

• Shear stress, denoted by τ , like axial stress, is also equal to the force over an area: τ = V

A

– Force here is the shear force
– Area here is related, but not equal to, the cross sectional area of the beam

• In the figure above, a section is cut from a beam; there are vertical shear stresses on the left and
right sides, which satisfy vertical equilibrium, but since they form a couple and produce a moment,
complementary shear stresses exist on the top and bottom faces to satisfy rotational equilibrium

• These shear stresses and complimentary shear stresses can be resolved into diagonal tension and
compression

– Shear stresses can be transformed into diagonal axial stresses and back again, but for beam design
the shear stresses can be used directly

• While axial stresses tend to cause the material to extend or contract and change volume, shear stresses
tend to change the shape of the material while maintaining its volume

– Shear stresses are usually denoted γ
– Axial stresses come from forces perpendicular to the cross section and changes squares to rectangles

(deforms and gets longer)
– Shear stresses come from forces parallel to the cross section and deform a square into a parallelogram
– For a linear elastic material, there are no axial stresses produced by shear

Figure 47: Axial deformation vs shear deformation

•

• Shear stresses cause different modes of failure; in wooden members, adjacent elements can slide past
each other; in more brittle materials such as concrete diagonal cracking may occur; finally diagonal
compressive shear stresses may lead to diagonal buckling

•

• If we look at a small section cut in the middle of the beam, the shear stresses on the top and bottom of
the cut are always the same as the left and right sides

45



Figure 48: Failure due to shear stresses

– Horizontal shear stresses always comes with vertical shear stresses
– Shear stresses are 0 at the top and bottom of the beam

Shear Deformations
• Consider a square section, with 4 targets marked at the 4 corners; after this section is deformed by

shear, the distance between one pair of diagonals got logger and the other distance between the other
pair of diagonals got shorter

• Inside shear is both tension and compression, so it causes materials to elongate and contract at the
same time

• Notice the way the concrete beam failed in the image above; the diagonal failure is because there is
diagonal tension

Jourawski’s (Zhuravskii’s) Equation

Figure 49: Jourawski’s Equation derivation

• Since shear force is the derivative of bending moment, where there is shear force, there will be a change
in bending moment

• Consider a beam with width b and second moment of area I, with a cut ∆x units wide in the diagram
above; the right side has a higher bending of M + ∆M

• In the right diagram, the cut is further cut at some depth; the higher moment on the right side creates
higher flexural stresses and causes a net horizontal force of ∆C to the left
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• If we cut it at a depth of y0, ∆C =
� ytop

y0

σ(y) dy =
� ytop

y0

∆My

I
dy = ∆M

I

� ytop

y0

y dy = ∆M

I
Q

– Q is the quantity
� ytop

y0

y dy, which is a first moment of area about the centroidal axis of the

membe
• For this member to be in equilibrium, there must be a shear force on its underside also with magnitude

∆C; since τ = V

A
=⇒ V = τA = τb∆x

– The area over which the shear stress acts is the beam’s width times the length of the cut
• Therefore, ∆M

I
Q = ∆C = τb∆x =⇒ τ = ∆MQ

Ib∆x
= τ

Q

IB
· ∆M

∆x
, and as lim

∆x→0

∆M

∆x
= dM

dx
= V , we

have τ = V Q

Ib
– This equation lets us calculate the shear stress and is called Jourawski’s Equation

• τ = V Q

Ib
computes the horizontal shear force, but since the vertical shear forces are always the same it

also computes the vertical shear forces

Calculating Q

Figure 50: Calculating Q for a more complex region

• Recall that ȳ =
�

A
y dA�

A
dA

=⇒
�

A

y dA = ȳ

�
A

dA = ȳA

• Therefore we can calculate Q for a certain depth by first finding A, the area of the cross section above
the depth of interest, then determine the distance between the centroidal axis of the section of interest
and the centroidal axis, d, and using Q = Ad

• For more complex regions we can break it up into simpler components and use Q =
� n

i=1
Aidi

• We don’t care about when Q is negative since the direction of the shear stress doesn’t matter, so Q is
always an absolute value

• The integral for Q can be evaluated from the top of the cross section or the bottom:
� y0

ybot

y dA =
� ytop

y0

y dA

– This is because
� y0

ybot

y dA +
� ytop

y0

y dA =
� ytop

ybot

y dA, but the first moment of area about the

centroidal axis is always zero
– Therefore

� y0

ybot

y dA = −
� ytop

y0

y dA, but because we don’t care about the sign of Q, we can say

that they’re equal

47



Distribution of Shear Stresses
• Like flexural stresses, shear stresses are nonconstant over the cross section since Q depends on the

depth that the shear force is being calculated
• In general, Q has the following properties:

1. Q varies parabolically over the height of the member
2. Q and thus τ is zero at the very top and bottom of the member
3. Q is maximized at the centroidal axis of the member

• If we integrated the shear stresses across y we will get the shear force V

Lecture 26, Nov 16, 2021
Shear Stresses in Complex Shapes

Figure 51: Calculation of sshear stresses in an I beam

• Jourawski’s equation can still be used: τ = V Q

Ib
• Q must now account for the geometry more carefully; complex shapes can be broken up into pieces,

and Q =
n∑

i=1
Aidi, where Ai is the area of each piece and di are the distance between the centroid of

the piece and the centroid of the cross-section
– While A is always positive, d is signed
– However in the end Q will always be positive since we don’t care about the direction of shear stress

• b is the width of the cross section at the location of interest
• Since Q can be calculated from either the top or the bottom, we can do either one; it’s not always the

easiest to calculate Q from the side it’s the closest to
• Q has units of mm3

Glued Components

Figure 52: Calculating shear stresses for horizontal glued surfaces
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Figure 53: Calculating shear stresses for vertical glued surfaces

• Larger cross sections are often created by fastening together smaller components, so shear resistance at
the joint is crucial

• For horizontal glued surfaces, the same procedure is used for Q, and b is taken to be the combined
width of the interfacing surfaces

• For vertical glued surfaces, b is taken to be the total width of the vertical glued surfaces, but now Q is
calculated for the area of the cross section which will slide longitudinally if the glue fails

– In the example, since the piece will slide on both glue joints if it fails, we consider b to be the total
width of both of the joints

• Shear flow: imagine if you poured water down the shape, how does it go to the bottom? Shear stresses
point in the same direction

– Example: For an I beam the shear flow goes horizontally when in the flange and then vertically
down the stem

– If the direction of shear flow goes perpendicular through the glue section then we need to consider
shear stresses in that direction (vertical or horizontal)

Shear Stress Distribution

Figure 54: Shear stress distributions for an I beam and T beam

• τ increases when Q increases or when b decreases, so a sudden decrease of width in the cross section
will result in a sudden jump in τ

• When determining the maximum shear stress in members with the varied length, check both the
centroid, where Q is maximized, and the narrowest location, where b is minimized
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Lecture 27, Nov 27, 2021
Wooden Beams

• Timber are the structure parts of wood that can be used to make stuff
• There are two types of wood: softwoods, which are easy to work with and less strong, and hardwoods,

which are stronger, stiffer, heavier and harder to work with than softwoods
• Since softwoods are cheaper and easier to work with, they’re more often used in construction
• Hardwoods consist of densely packed fibre which makes it hard and stiff

– Cells in hardwood are smaller and cells in softwood are larger
– Softwoods grow faster because of this and are cheaper and easier to cut

• Since wood has a grain direction, it is an anisotropic material (different mechanical properties in
different directions), unlike steel, which is an isotropic material (same properties regardless of direction)

– Furthermore wood is also an orthotropic material, since the strength differs parallel vs perpendicular
to the grain, which are two orthogonal directions; orthotropic materials are a subset of anisotropic
materials

– Nature optimizes trees to resist stresses along the direction of the grain

Response to Loading

Figure 55: Stress-strain response of wood parallel vs perpendicular to the grain

• Wooden members tend to perform better when loaded like how a tree would in nature; they’re much
better at resisting axial forces and bending moments acting parallel to the grain

• When loaded perpendicular to the grain, wood is a lot softer and more ductile and makes for a good
material to support delicate objects

• Wooden beams are strong in bending because flexural stresses act parallel to the grain, but are
susceptible to shear since the fibres can slide past each other (see image in previous lecture)
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• There are also often cracks in the wood along the grain due to shrinkage when the timber is prepared,
further weakening it on the axis perpendicular to the grain

Designing With Wood
• Since wood is not an engineered product, it has great variability in its mechanical properties, even

when pieces are cut from the same tree, which presents a challenge in engineering
• The distribution of failure stresses for wood follow a normal distribution; the weakest specimen are only

half the average strength
• In order to account for the variability, the 5th percentile strength (i.e. the maximum failure strength of

the weakest 5% of specimen) is typically used in design with a factor of safety of 1.5
• The 5th percentile strength is typically weaker in smaller members, since they’re influenced more by

the presence of knots and other defects
• When determining member strength, the 5th percentile Young’s modulus, E05, should be used, since we

want to design for safety; when determining the deflection, the average Young’s modulus, E50, should
be used, because when calculating deflections there are typically multiple members involved, which will
average out the values

• These values are shown for both small and big members of various species of wood in the appendix
• For buckling use the 5th percentile E, for moment area theorems use the average E

Lecture 28, Nov 22, 2021
Thin-Walled Box Girders

• Hollow structural members are efficient as they have high flexural stiffness even though they weigh
much less than a solid member

• In additional to the normal modes of failure such as yielding and buckling of the whole structure, they
can also fail by local buckling of the thin walls instead of the whole structure itself (discussed in later
lectures)

• The top and bottom of the tube can be reinforced with vertical stiffeners to resist the high flexural
stresses

• These members can fail in the following methods in compression:
1. Crushing when compressive yield/ultimate strength is reached
2. Global buckling, when the entire member buckles and sticks out to the side
3. Local buckling, when only parts of the member buckle but the overall structure does not (imagine

crushing a flimsy cardboard tube)

Local Buckling

Figure 56: Plate in compression with sides unrestrained
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Figure 57: Plate in compression with sides restrained

• When we’re dealing with members made of thin pieces, they can fail in another buckling method
• For a plate with a width b and thickness t and length L, if the sides are unrestrained, the critical

buckling stress according to the Euler equation is σcrit = π2E

12

(
t

L

)2

– P = π2EI

L2 and I = bt2

12 =⇒ σcrit = P

bt
= π2EI

btL2 = π2Ebt3

12btL2 = π2Et2

12L2 = π2E

12

(
t

L

)2

• If the sides are restrained like in the second figure, the critical stress is σcrit = kπ2E

12(1 − µ2)

(
t

b

)2

– This came from an extension of Euler buckling into two dimensions; k depends on the loading
conditions and the boundary conditions (i.e. how the edges of the plane are restrained)

– µ is the Poisson’s ratio of the material, a measure of how much it deforms in the direction
orthogonal to the applied load

* If the material has a strain in the x direction, then εy = −µεx = −µ
σx

E
, i.e. the material

contracts along the y axis to make up for the change in length
* Since the material is restrained in the y axis, σy = −µσx since there needs to be a stress in

the y direction to keep the y strain zero
* This additional y stress then carries over to the x axis as an additional stress µ2σx, and since

it acts in the opposite direction as the applied stress, the net x strain is now εx = σx(1 − µ2)
E

;
this is where the factor of 1 − µ2 in the equation comes from

* Therefore σx

εx

1 − µ2

E
= 1 =⇒ σx

εx
= Eeff = E

1 − µ2

* For 2D conditions, the effective E is E

1 − µ2

– Notice that when comparing this to the equation for unrestrained edges (global buckling), E is
replaced by E

1 − µ2 , there is an added factor of k, and now we’re using b, the shorter edge, instead
of L

• This situation can happen when you fold something into a tube; the top of the tube effectively has
both its edges restrained from buckling in the out of plane direction

• Under these conditions the plate buckles into a 3D shape, with two dimensions both buckling into sine
waves, making the situation much more complicated

Plate Buckling Equations
• For the plate in the figure above, with sides restrained from movement both in and out of the plane,

k =
(

1
n

· L

b
+ n

b

L

)2
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– This comes from buckling in 2 dimensions where z(x, y) = A sin
(mxπ

b

)
sin
(nπy

L

)
* It turns out that the smallest buckling forces comes from when n = 1 in the short direction

(the width), and n in the long direction doesn’t really matter
– n is the number of half cycles which the buckled plate assumes, which is like the mode of buckling

in the Euler equation
– Even though it takes on a range of values depending on L

b
and n, the lowest possible value is 4

– The lower bound of the buckling stress used for design is then σcrit = 4π2E

12(1 − µ2)

(
t

b

)2

Figure 58: Half restrained plate

•

• For the situation above where only one boundary is restrained, the critical stress is greatly reduced,

with k = 0.425, i.e. σcrit = 0.425π2E

12(1 − µ2)

(
t

b

)2

Figure 59: Restrained plate with linearly varying forces

•

• For the situation above where the load varies linearly, k = 6, i.e. σcrit = 6π2E

12(1 − µ2)

(
t

b

)2

Figure 60: Plate subjected to shear stresses

•
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• For the situation above, with the plate restrained from buckling in the out-of-plane direction by vertical

stiffeners spaced a apart, the critical shear stress is τcrit = 5π2E

12(1 − µ2)

((
t

h

)2
+
(

t

a

)2
)

– In this situation, the plate is effectively restrained from buckling in the z direction on all 4 sides

Lecture 29, Nov 23, 2021

Design of Thin-Walled Box Girders

Figure 61: Example box girder bridge and cross section

• For a thin-walled box girder we already know of 4 methods of failure:
1. Tensile failure of the walls due to flexural tension
2. Compressive failure of the walls due to flexural compression
3. Shear failure of the walls
4. Shear failure of the fastening material (glue, screws, etc)

• For the first two we use σ = My

I
and for the last two we use τ = V Q

Ib
• Taking into account thin wall buckling adds an additional 4 methods of failure (note: compressive

flange is the top part, the webs are of the rest of the box):
5. Buckling of the compressive flange between the webs

– This is the part of the top piece that’s between the web pieces (the middle, i.e. top of the box)

Figure 62: Diagram

–

– Since it’s restrained on both sides, we use the equation σ = 4π2E

12(1 − µ2)

(
t

b

)2
to determine

the critical buckling stress, with the real flexural stress calculated by σ = My

I
6. Buckling of the tips of the compressive flange
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– This is the rest of the top piece (the edges, i.e. the part of the top piece that’s not a part of
the box)

Figure 63: Diagram

–

– Since it’s restrained on only one side, we use the equation σ = 0.425π2E

12(1 − µ2)

(
t

b

)2

7. Buckling of the webs due to flexural stresses
– This is the vertical webs, from the centroid up to the top, or from the bottom to the centroid

Figure 64: Diagram

–
– Since flexural compression at the centroid is 0 and varies linearly as we move to the top/bottom

and the piece is restrained on both sides, we use σ = 6π2E

12(1 − µ2)

(
t

b

)2
(σ here is the maximum

compressive stress, taken where y is maximized)
8. Shear buckling of the webs

Figure 65: Diagram

55



–

– For shear buckling we use τcrit = 5π2E

12(1 − µ2)

((
t

h

)2
+
(

t

a

)2
)

• Note: Even though there are two webs, when calculating the critical buckling stress for the webs, we
still only use the width of one web, because each web can buckle independently of each other

Design Considerations
• The matboard is much stronger in tension than in compression, so the design could utilize this

– This might be hard to do because sometimes the top is in compression and sometimes the bottom
is in compression

– We can vary the cross-section
• Adding more material on one side brings the centroid closer to that side, so the compression stress will

be smaller
• In a zone where the top is in compression, the top can be reinforced with more material to resist more

compression and bring the centroid closer to that side to make the stress smaller
– e.g. doubling the top thickness and removing the bottom surface

• Where the bottom is in compression, the cross section would need to be optimized
– e.g. add a compression flange on the bottom, causing a big increase to I and prevent local buckling

of the bottom parts of the webs

Lecture 30, Nov 29, 2021
Properties of Stone

• Stone-like materials have different properties than wood or metal:
– They are heavy and tend to be used in large structures, so there is significant self-weight to be

considered
* However, the added density could be good because it can stabilize the structure

– Strong in compression but weak in tension, little to no ductility
– Essentially the opposite of cables (stone is anti-rope)
– Stone is durable and does not corrode like metal (however, with reinforced concrete, corrosion is

still an issue)

True Theory of Arches
• Stone is commonly used in arches; these must be designed so that the load can be transferred to the

ground without any tensile stress
• Hooke summarized this with “As hangs a flexible cable, so, inverted, stand the touching pieces of an

arch”
• Under a UDL the ideal shape for an arch becomes a parabola just like a cable in a suspension bridge
• With arches the supports are 2 pins, not a pin and a roller, because with a pin and a roller the arch

would simply deform and work like a beam
– With the 2 pins we can now have a horizontal compression

• If the arch is in the optimal shape then it will only carry compression
• If the arch is not in the perfect shape, then in addition to axial compression, there will also be bending

moments
• The optimal shape for a hanging cable is known as the thrust line, which is the centroid of compression;

even in other shapes, the thrust line is still parabolic and can be calculated
• Draw the parabola thrust line onto the arch, and if the thrust line fit inside the arch, then the arch will

not collapse
– We can compare the thrust line to the centroidal axis; in a perfect arch these two would line up

perfectly
– The distance between the thrust line and the arch centroid is e, the eccentricity
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– If the thrust line falls out of the cross section then the arch will fail

Design for Combined Axial Load and Bending Moment

Figure 66: Stone tower subjected to high wind forces

• Stone’s poor tensile strength makes it bad for resisting bending moments since these will cause tension
on one side and compression on the other (which is why beams are usually not made of concrete on its
own)

• Sometimes the high self-weight can actually help resist moments
• Consider the stone tower subjected to a high wind load, with unit density γ and volume V0; at the

bottom it is subjected to axial compression from its self weight, so σN = −N

A
= −V0γ

A
– Note that if the cross-sectional area is constant this is effectively σ = hγ

• The wind causes a bending moment M , and the flexural stresses caused by this can be calculated using
σM = My

I
, so on the left side there would be a flexural tension of σM = Myleft

I

• If the tower is still linear elastic then these two effects can be combined to get σ = −N

A
+ Myleft

I
at

the left and σ = −N

A
− Myright

I
on the right

• The compressive force from the tower’s self weight essentially counteracts the flexural tension, so if the
tower is heavy enough, the left side may remain in compression despite the high wind
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Lecture 31, Nov 30, 2021
Concrete

• Concrete has the advantage of being able to be cast into any shape
• Cement is to concrete as flour is to cake: concrete is made of a combination of materials, including

cement, water, sand, aggregate (rocks), and admixtures (additives to change the concrete’s properties)
– Cement is the expensive part, made of limestone, heated to remove carbon dioxide, and ground

into a powder
– Adding water to this basically gives you artificial stone

• Concrete can be made inexpensively and locally but produces a lot of carbon dioxide
• When concrete cures, it does not dry, instead it undergoes a chemical reaction that consumes the water

and produces heat
• Concrete is either cast or placed, not poured; it is gently laid down so that the aggregate doesn’t all

sink to one place

Material Properties of Concrete
• Concrete exhibits linear elasticity in compression until about 40% of its ultimate compressive stress,

and is fully linear elastic in tension until it fails by cracking
– The full stress-strain curve in compression for concrete looks like a parabola
– Stone usually does not have the curve (only concrete does)
– The yield strain of steel and concrete are similar

• The notation for stresses in concrete are different, with f representing axial stresses and v representing
shear stresses (instead of σ and τ)

• The compressive strength of concrete is denoted f ′
c

– Compressive strengths higher than 40MPa is high strength concrete (as opposed to normal strength);
high strength concrete can have compressive strengths exceeding 100MPa

– The prime denotes the testing method (size, age, machine, etc)
• Since performing tensile tests on stone-like materials is difficult, often cracking stresses are obtained

using empirical equations that relate compressive strength to these quantities
• The tensile/cracking strength of concrete is related to its compressive strength by f ′

t = 0.33
√

f ′
c

– Note that f ′
c must be in MPa, because the square root means that 0.33 has dimensions

• For normal strength concrete, the Young’s modulus relates to compressive strength by Ec = 4730
√

f ′
c

– Again f ′
c must be in MPa

– Note that even though 4730 seems precise it’s actually not

Reinforcing Steel
• Reinforcing steel bars or rebar are bent and tied together to form cages to strengthen the concrete;

concrete without steel is called plain concrete and concrete with steel is reinforced concrete
• Deformed bars have ribs on the bar to mechanically connect to the concrete (so the concrete grabs onto

the bar)
– This allows us to assume that the steel strain is equal to the concrete strain

• Rebar is made of mild steel with Es = 200000MPa and a yield strength of fy = 400MPa in both tension
and compression (note: different countries have different standards; most other places use fy = 500MPa)

• Rebar has standard sizes with designations; the bar number roughly refers to the diameter
– The M in the names mean metric

• We assume that rebar has a flat yield plateau with no strain hardening because to get strain hardening
requires strains that are not realistic

Reinforced Concrete
• Concrete reinforced with steel behaves similarly in compression but is much better in tension
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• Once the concrete cracks, the steel carries the tension and it yields, making the material much more
ductile and able to carry much more tension

– The shape of the stress-strain response after cracking is complex
• More steel leads to more cracks, which distributes the tension more evenly across more narrow cracks

instead of one big crack

Lecture 32, Dec 1, 2021
Flexural Behaviour of Reinforced Concrete

Figure 67: Load-displacement plot of a reinforced concrete beam subject to bending

• Concrete beams are reinforced on the side experiencing tension for bending to have the steel carry the
tension (longitudinal reinforcing bars)

• They should be as far away from the neutral axis as possible to be efficient, but they can’t be exposed
since that leads to corrosion

– The part between the reinforcing bar and the outside of the concrete is the cover and is typically
40mm

– There are also often hooks (bent sections) on the ends to make the bars harder to take out
– The steel balances out the moment caused by the concrete compression, so it’s the most efficient

to make the steel far away from the neutral axis
• There are 3 phases when reinforced concrete is subjected to bending:

1. Linear elastic: For small loads, the concrete can take the tension and the behaviour is linear elastic
(Navier’s equation can be used, as well as all the equations we’re learned thus far)

2. Cracked elastic: For larger loads, the concrete fails from tension; the steel carries the tension and
the concrete carries the compression; stresses are still small enough that the behaviour is linear
elastic, but now with a different slope

– The neutral axis is no longer the centroidal axis
– This is where most service loads lie in

3. Nonlinear: For even larger loads, the steel will begin to yield and the concrete will begin to crush;
behaviour in this phase is complex

– This region is incompatible with the allowable stress method we’re using so we don’t consider
it for now

• For underreinforced beams, yield happens first and then crushing happens; overreinforced beams crush
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first and may yield later, or may not yield at all
– Underreinforced concrete is better because the yielding provides a warning, while the overreinforced

concrete does not have it
• Cracks are not a problem for reinforced concrete, in fact they’re designed with cracking in mind
• Reinforced concrete is a composite structure, with different materials carrying different loads

Analysis of Cracked Elastic Response

Figure 68: Cracked reinforced concrete beam subjected to bending moment

• Terminology:
– Depth: h is the overall concrete member depth (height of the cross section); d is the effective depth

(from the compression face to the centroid of the longitudinal reinforcement)
* If there are multiple layers of reinforcing bars then d is the distance to their combined centroid

(e.g. with 2 layers, the centroid is somewhere in between)

Figure 69: Definition of b

–
– b is defined as the width of the compression side of the cross section
– As is the area of reinforcement, the total cross-sectional area of the rebar
– kd is the depth of compression of the cracked section
– jd is the vertical distance between the compressive and tensile forces and is called the flexural

lever arm
• Assumptions:

1. Plane sections remain plane, so longitudinal strains vary linearly over the height
2. Concrete does not carry any tensile stresses
3. The steel is bonded to the concrete perfectly, so the concrete and steel strains are always equal
4. No axial load N = 0
5. Hooke’s Law still applies
6. The flexural compression depth is in the top flange

• The longitudinal strain is still ε = ϕy, but y is no longer the distance from the centroidal axis of the
cross section; the neutral axis of the cracked member is different because the concrete can’t carry tensile
stresses

– To find the new neutral axis we need to solve for the conditions to make the net axial force 0
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– Everything above the neutral axis is compression carried by the concrete, everything below the
neutral axis is tension carried by the steel

• Let kd be the distance from the top to the neutral axis (d is the distance from the top to the reinforcing
steel bars); then ε = ϕy =⇒ ϕ = ε

y
= εc,top

kd
= εc,top + εs

d
, where εc,top is the compressive strain at

the top and εs is the tensile strain in the steel
• Rearranging: εc,top = ϕkd =⇒ εs = ϕd − εc,top = ϕd − ϕkd = ϕd(1 − k)

– Stresses can be solved for once these strains are known
– Compressive stress in the concrete is 0 at the neutral axis and maximum at the top
– Steel carries tensile stress at the location of the bars

• The net compressive force in the concrete can be found by integration: Cc =
�

Ac

fcdAc =
�

Ac

EcεcdAc =

1
2bkdEcεc,top

• The net tensile force in the steel can be found by multiplying the steel stress by the area: Ts = fsAs =
EsεsAs

• A member in pure bending has no net axial force so 1
2bkdEcεc,top = EsεsAs =⇒ 1

2ϕbk2d2Ec =
ϕEsAsd(1 − k)

– k can be solved: 1
2k2 + k

Es

Ec

As

bd
− Es

Ec

As

bd
= 0

– Define the modular ratio n = Es

Ec
, the ratio of the Young’s modulus of reinforcing steel to concrete

– Define the quantity of longitudinal reinforcement ρ = As

bd

– Using these quantities, 1
2k2 + knρ − nρ = 0

• k =
√

(nρ)2 + 2nρ − nρ
• To find M , note that Cc and Ts form a couple, so M = Ccjd = Tsjd

– jd is the vertical distance between the compressive and tensile forces and is called the flexural
lever arm

– Since concrete stresses are triangular, the equivalent force is located at kd

3
– jd = d − 1

3kd =⇒ j = 1 − 1
3k

• Using this we can find a link between the bending moment and stress in reinforcement: M = Tsjd =
Asfsjd =⇒ fs = M

Asjd

– So the strain is εs = M

EsAsjd

• We can also find the curvature: M

EsAsjd
= εs = ϕd(1 − k) =⇒ ϕ = M

AsEsjd2(1 − k)
• Concrete stress: fc = Ecεc = Ecϕkd = Eckd

M

AsEsjd2(1 − k) = k

1 − k

M

nAsjd
• The maximum moment that can be carried without yielding is Myield = Asfyjd where fy is the yield

stress of the steel

Summary of Design Process
1. Make SFD, BMD, determine maximum moment that must be carried
2. Estimate area of steel required

• Using a provided d, estimate k ≈ 3
8 and j ≈ 7

8
• Use the fact that Myield = Asfyjd =⇒ As = M

fyjd

• If the max allowable stress in the steel is αfy, then As = M

αfyjd
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• Note the max allowable steel stress is typically taken to be 0.6fy

3. Determine the number of bars needed so the area requirement is met
4. Calculate k using k =

√
(nρ)2 + 2nρ − nρ, where n = Es

Ec
, ρ = As

bd

5. Calculate the flexural lever arm jd = d

(
1 − 1

3k

)
6. Check to ensure that the steel stress fs = M

Asjd
is less than the max allowable stress

• Max allowable steel stress is 0.6fy (factor of safety of 1.67)

7. Check to ensure that the concrete stress fc = k

1 − k

M

nAsjd
is less than the max allowable stress

• Max allowable concrete stress is typically taken to be 0.5f ′
c (factor of safety of 2)

Lecture 33, Dec 6, 2021
Reinforced Concrete Under Shear

• Shear causes diagonal tension, which could easily cause diagonal cracks to form
– Bending cracks are vertical, shear cracks are diagonal

• Once concrete is cracked diagonally, there are two ways it can carry shear stresses:
1. Aggregate interlock: The rough crack surfaces due to the aggregate (rock pieces) lock against each

other, along with the longitudinal steel carry tension across the crack
2. Shear reinforcement (aka stirrups or transverse reinforcement): Steel reinforcement bars perpen-

dicular to the longitudinal reinforcement carry tension across the crack
– It would be more effective to make these diagonal to be perpendicular to the tension direction,

but doing so makes it much harder to construct
• Shear failures can be very aggressive and sudden so they’re very dangerous (compared to yielding of

longitudinal steel)

Shear Equation

Figure 70: Derivation of the shear stresses in cracked reinforced concrete

• Jourawski’s equation can no longer be used because the concrete’s tensile capacity is severely reduced

• Recall that M = Tsjd where jd is the flexural lever arm (vertical distance between the centroid of the
flexural stresses and the centroid of the tensile stresses)

• Consider a longitudinal slice as shown above, then M = Tsjd =⇒ V = dM

dx
= ∆Tsjd

∆x
=⇒ ∆Ts =

V ∆x

jd

• Shear stress τ acts over an area with length ∆x and width bw (top right figure), so to satisfy equilibrium,

62



vbw∆x = ∆Ts = V ∆x

jd
=⇒ v = V

bwjd

Figure 71: Effective web width
–

– Note that bw may consider adjacent webs

• Shear failure happens when v > vc + vs, where vc is the shear strength from aggregate interlock, and vs

is the shear strength from the steel shear reinforcement

– Vc = vcbwjd and Vs = vsbwjd where the capital V s are the shear forces

• If the member can’t fail under shear tension, then the diagonal shear compression may also cause
crushing of the concrete; the shear stress at which this occurs is defined as vmax = 0.25f ′

c by the
Canadian concrete design code (f ′

c is the compressive strength of concrete)

– The failure shear force for concrete crushing is 0.25f ′
cbwjd

– We don’t consider buckling in this case because typically the concrete is thick enough that buckling
isn’t an issue

• In summary the shear failure force Vr is equal to the sum of the concrete strength and steel strength,
and this sum is less than Vmax

– To provide an adequate factor of safety steel strength terms are multiplied by 0.6 and concrete
strength terms 0.5 (FoS of 1.67 in steel, 2 in concrete; this is because steel is manufactured under
controlled conditions, while concrete is cast outdoors so has more variability)

– Vr = 0.5Vc + 0.6Vs ≤ 0.5Vmax

Figure 72: Location of shear force taken

•

• Shear forces at reactions and point loads are typically not used because the added compression prevents
the member from failing in shear tension at that location

– Typically shear forces a distance d from the reaction or point load is used (d is the distance from
the steel reinforcement and compression face, the same one used in flexural design)
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Shear Capacity Without Shear Reinforcement
• Members without shear reinforcement rely solely on vc (aggregate interlock) to carry shear once the

concrete is cracked
• As the member depth increases, the cracks tend to get larger, which makes aggregate interlock less

effective (referred to as the size effect)

• The shear strength of concrete without shear reinforcement is vc =
230
√

f ′
c

1000 + 0.9d
, so Vc = vcbwjd =

230
√

f ′
c

1000 + 0.9d
bwjd

– Once again units have to be MPa and mm in this empirical equation

Shear Capacity With Shear Reinforcement

Figure 73: Types of shear reinforcement

Figure 74: Diagonal stress fields and simplified truss model for reinforced concrete in shear

• Shear reinforcement bars are perpendicular to the longitudinal reinforcement and are commonly inserted
by bending bars to form U shapes or hoops (stirrups)

• The area of shear reinforcement Av is the total cross-sectional area of the vertical bars
• Shear reinforcement provides shear strength Vs and controls the crack width, thus making aggregate

interlock more effective and increases Vc as well
• The shear stress can be simplified into diagonal compression of angle θ and converted into a truss model,

with height jd and shear reinforcement spaced s apart
– The vertical tension members in this model are spaced jd cot θ apart
– A

jd cot θ
= Av

s
=⇒ A = Avjd cot θ

s

– Failure occurs when the stress in these bars reach the yield stress, so Vs = Afy = fyAvjd

s
cot θ

– The Canadian design code assumes diagonal stresses at θ = 35°, thus Vs = Avfyjd

s
cot 35°

– The shear strength attributed to the steel is vs = Vs

bwjd
= Avfy

bws
cot 35°

• For small amounts of shear reinforcement Vc is unchanged, but if Avfy

bws
≥ 0.06

√
f ′

c, then vc =

0.18
√

f ′
c =⇒ Vc = 0.18

√
f ′

cbwjd
– Note that if there’s less than this amount of shear reinforcement, we essentially treat Vs = 0,

because if there’s not enough shear reinforcement then they may not cross the cracks so they might
not work at all
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Summary
• To evaluate the shear strength of a member:

1. Obtain SFD, BMD, and determine max shear force V (at least d away from a reaction force or
point load), calculate k, j

2. Check the amount of shear reinforcement to determine the right equation to use: Vc =
230
√

f ′
c

1000 + 0.9d
bwjd

Avfy

bws
< 0.06

√
f ′

c

0.18
√

f ′
cbwjd otherwise

3. If there is shear reinforcement, Vs = Avfyjd

s
cot 35°

4. Calculate the shear strength: Vr = Vc + Vs ≤ Vmax = 0.25f ′
cbwjd

5. Check for failure, when V = Vr

• To design shear reinforcement:
1. Obtain SFD, BMD, max V , k, j
2. Check if V ≥ 0.5Vmax = 0.5 · 0.25f ′

cbwjd; if so then the cross-section is too small and needs to be
resized

3. Check whether V < 0.5Vc = 0.5
230
√

f ′
c

1000 + 0.9d
bwjd; if so then aggregate interlock alone can handle

the shear, so the design is complete
4. Provide the minimum amount of shear reinforcement, Avfw

bws
= 0.06

√
f ′

c =⇒ s = Avfy

0.06
√

f ′
cbw

,

and then check whether V < Vr = 0.5Vc + 0.6Vs = 0.5 · 0.18
√

f ′
cbwjd + 0.6 · Avfyjd

s
cot 35°

5. If the shear capacity is still too low, then determine the minimum s needed to make V = Vr:
s = 0.6 · Avfyjd cot 35°

V − 0.5 · 0.18
√

f ′
cbwjd

Lecture 34, Dec 7, 2021
Reinforced Concrete Design Example

• What are the predicted: failure load f and failure mode (flexural? shear?) for the 2 beams tested at
UofT?

• Beams:
– YB2000/0

* Simply supported, no shear reinforcement
* Rectangular cross-section, 2000mm tall 300mm wide, d = 1890mm
* 6 bars at the bottom (30M bars, fy = 457MPa), 3 bars at the top (20M bars, fy = 433MPa),

no shear reinforcement
* 5400mm from midpoint load P to supports
* f ′

c = 36.6MPa, Ec = 28000MPa, γ = 24kN/m3

– YB2000/4
* Same dimensions
* Vertical shear reinforcement, one leg of Av = 129mm2, s = 590mm, fyt = 468MPa

• Analysis:
1. Reactions, SFD, BMD: Consider both self-weight and applied load (same for both beams)

– Span of 1080m, not considering the bit past the supports
– Self-weight causes w = 14.4kN/m
– Reaction forces due to self-weight are 77.8kN at each support

– BMD due to self-weight is a parabola with peak wL2

8 = 210kN m

– Point load causes reaction forces of P

2 (max shear), and max bending moment of PL

4 = 2.7P
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– Combining the two SFDs and BMDs, the peak shear is at the support V =
(

77.8 + P

2

)
kN,

and the peak moment M = (210 + 2.7P ) kN m is at the middle
2. Bending strength check (same for both beams since the shear reinforcement does not affect bending)

– No safety factors since we’re trying to predict the failure load
– n = Es

Ec
= 200000MPa

28000MPa = 7.14

– ρ = As

bd
= 6 · 700mm2

300mm · 1890mm = 0.00741 = 0.741%

– nρ = 0.0529 =⇒ k =
√

(nρ)2 + 2nρ − nρ = 0.277 (depth of compression is 27.7% of d)
– jd = 1750mm
– j = 1 − 1

3k = 0.908
* The design code assumes j = 0.9

– fs = M

Asjd
= fy at bending failure due to yield (strain hardening ignored)

– Steel yielding happens at M = fyAsjd = 3292kN m = 210 + 2.7P =⇒ P = 1141kN
– Concrete crushing skipped since from experience it won’t govern; on an exam note down the

assumption if this is not being checked
3. Shear strength

– For YB2000/0:

* Av = 0 =⇒ Vs = 0 =⇒ Vult = Vc =
230
√

f ′
c

1000 + 0.9d
bwjd = 230

√
366

1000 + 0.9d
·300·1750 = 265kN

* 265kN = 77.8 + P

2 =⇒ P = 374kN
* Since this is smaller, it governs
* The actual experiment failed at P = 463kN (ratio of observed to predicted is 1.2)

– For YB2000/4:
* Check whether there is enough shear reinforcement: Avfyt

bws
≥ 0.06

√
f ′

c, for this beam this
doesn’t quite work
• This beam was designed before the new rules, so we’re going to assume there is enough

shear reinforcement anyway (don’t do this at work or on the exam!)
* Vc = 0.18

√
f ′

cbwjd = 538kN

* Vs = Avfytj

s
cot 35° = 250kN

* Vult = Vc + Vs = 558 + 250 = 808kN = 77.8 + P

2 =⇒ P = 1460kN
* Since this is higher than the P from flexure, flexure governs for this beam
* Note that Vmax was not checked because of time, but should be done!

• Note the significant increase in failure load by adding the shear reinforcement

Lecture 35
Prestressed Concrete

• Prestressed concrete is a form of active reinforcement (as opposed to passive reinforcement) where the
steel reinforcement inside the concrete is prestressed and carries significant tension before any external
loads are applied

– Tensile forces in the steel causes compression of the concrete
– The steel is in an active state of tension and is always engaged, not just after the concrete cracks
– Uses high-strength steel and high-strength concrete, so the steel can be strong enough to compress

the concrete and the concrete does not crush under the steel compression and regular loads
– The prestressed reinforcement is referred to as tendons

• Pre-tensioning casts concrete around strands of steel that are being pulled so when the concrete sets,
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the ends of the steel are cut and the embedded parts compress the concrete
• Post-tensioning casts hollow ducts into the concrete, and after the concrete sets steel is inserted into

the ducts, and then stressed and anchored
• Deformations in prestressed concrete are much smaller since significant forces are required to overcome

the tension in the steel
• In typical loads the prestressed concrete does not crack
• Total stress in the concrete can be calculated as the sum of the stress from prestressing and the stress

from external loads

Calculating Stresses

Figure 75: Prestressed member with a concentric tendon

Figure 76: Prestressed member with an eccentric (not lined up with centroid) tendon

• Under typical loads the concrete is uncracked and so behaves linear elastically, so we can simply sum
the stresses if this is the case

– Note that if the stresses calculated exceeds the tensile strength of the concrete, then it will crack,
and more advanced methods are needed

• If the tendon is lined up with the centroid and has force P , then they don’t cause a bending moment,
and the stress at any depth can be found by summing the stress from the tendon and Navier’s equation

– σc,top = −P

A
− Mytop

I

– σc,bot = −P

A
+ Mybot

I

– Note P

A
is negative since the tendon force is compressive; sign conventions assume positive bending

moment means top is in compression

•

• Eccentric tendons are more effective when designing for bending, since the prestressing force opposes
the bending moment

• To resist the prestressed load the concrete carries an equal and opposite axial force at the centroid; this
force and the tendon force form a couple with lever arm e, so there is an internal bending moment that
must resist this
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Figure 77: Curving of prestressed member

• With eccentric tendons, we sum the stress from the prestressing, from the bending moment caused by
external load, and the bending moment caused by the couple of the prestressing force and axial reaction
force

– σc,top = −P

A
+ (Pe − M)ytop

I

– σc,bot = −P

A
− (Pe − M)ybot

I

• Where bending moment is low, the stresses caused by the tendon eccentricity can actually crack the
top of the member, so it’s common to curve the tendons, and have the eccentricity vary according to
the bending moment demand
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